Email updates

Keep up to date with the latest news and content from BMC Neuroscience and BioMed Central.

This article is part of the supplement: Twenty First Annual Computational Neuroscience Meeting: CNS*2012

Open Access Poster presentation

Reaction-diffusion modeling in the NEURON simulator

Robert A McDougal1*, Yosef Skolnick23, James C Schaff4, William W Lytton25 and Michael L Hines1

Author affiliations

1 Department of Neurobiology, Yale University, New Haven, CT 06520, USA

2 Department of Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA

3 Department of Computer Science, CUNY Brooklyn College, Brooklyn, NY 11210, USA

4 Center for Cell Analysis & Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA

5 Kings County Hospital, Brooklyn, NY 11203, USA

For all author emails, please log on.

Citation and License

BMC Neuroscience 2012, 13(Suppl 1):P119  doi:10.1186/1471-2202-13-S1-P119

The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-2202/13/S1/P119


Published:16 July 2012

© 2012 McDougal et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Poster presentation

The NEURON simulator is a widely used tool for studying detailed single cell and network models. In recognition of the growing importance of multi-scale modeling, we have expanded NEURON’s support for intracellular chemical dynamics. In particular, we discuss our work with stochastic reaction-diffusion models and three-dimensional simulations.

Unlike previous NEURON mechanisms, arbitrary new reaction schemes may be specified at run-time via HOC or Python; no separate compilation step is required. This flexibility allows us to import models written in the Systems Biology Markup Language (SBML), which will facilitate collaboration between the neuroscience and cell biology communities.

In certain situations, such as calcium dynamics near a spine, only a few particles of a given chemical species are present. As these particles randomly move around, there is the potential for large percentage deviations from the mean concentration. To study these effects, we support the Gillespie and tau-leaping algorithms for stochastic reaction-diffusion, and our methods can easily be extended to other compartment-based approaches. Deterministic diffusion is also supported.

For electrophysiological simulations, NEURON employs a one-dimensional approximation of neuronal morphologies, but certain chemical reaction-diffusion problems in neurons exhibit behavior that cannot be captured by a such an approximation due to a small space constant. Many previous modelers have implemented radial diffusion as well as longitudinal diffusion, but this too misses many biologically important phenomena such as the nature of calcium microdomains near a spine or diffusion into the soma. Spatial simulations present additional challenges not present in one-dimensional approximations: geometric details can no longer be ignored; for example, a spatial simulator must define the shape of the joins between dendritic sections. Constructing a mesh becomes more complicated. For performance reasons, we allow different species to use different meshes, but this requires care when transferring data between grids. We discuss these problems and present our current strategies for resolving them.

We show preliminary modeling results illustrating the utility of these techniques to study the interaction of chemical and electrical dynamics in neuronal information processing.

Acknowledgments

Research supported by NIH R01MH086638.