Email updates

Keep up to date with the latest news and content from BMC Neuroscience and BioMed Central.

Open Access Highly Accessed Research article

Myelination in the absence of UDP-galactose:ceramide galactosyl-transferase and fatty acid 2 -hydroxylase

Marion Meixner1, Julia Jungnickel2, Claudia Grothe2, Volkmar Gieselmann1 and Matthias Eckhardt1*

Author Affiliations

1 Institute of Biochemistry and Molecular Biology, University of Bonn, Germany

2 Institute of Neuroanatomy, Medical School Hannover, Germany

For all author emails, please log on.

BMC Neuroscience 2011, 12:22  doi:10.1186/1471-2202-12-22

Published: 2 March 2011

Abstract

Background

The sphingolipids galactosylceramide (GalCer) and sulfatide are major myelin components and are thought to play important roles in myelin function. The importance of GalCer and sulfatide has been validated using UDP-galactose:ceramide galactosyltransferase-deficient (Cgt-/-) mice, which are impaired in myelin maintenance. These mice, however, are still able to form compact myelin. Loss of GalCer and sulfatide in these mice is accompanied by up-regulation of 2-hydroxylated fatty acid containing (HFA)-glucosylceramide in myelin. This was interpreted as a partial compensation of the loss of HFA-GalCer, which may prevent a more severe myelin phenotype. In order to test this hypothesis, we have generated Cgt-/- mice with an additional deletion of the fatty acid 2-hydroxylase (Fa2h) gene.

Results

Fa2h-/-/Cgt-/- double-deficient mice lack sulfatide, GalCer, and in addition HFA-GlcCer and sphingomyelin. Interestingly, compared to Cgt-/- mice the amount of GlcCer in CNS myelin was strongly reduced in Fa2h-/-/Cgt-/- mice by more than 80%. This was accompanied by a significant increase in sphingomyelin, which was the predominant sphingolipid in Fa2h-/-/Cgt-/- mice. Despite these significant changes in myelin sphingolipids, compact myelin was formed in Fa2h-/-/Cgt-/- mice, and g-ratios of myelinated axons in the spinal cord of 4-week-old Fa2h-/-/Cgt-/- mice did not differ significantly from that of Cgt-/- mice, and there was no obvious phenotypic difference between Fa2h-/-/Cgt-/- and Cgt-/- mice

Conclusions

These data show that compact myelin can be formed with non-hydroxylated sphingomyelin as the predominant sphingolipid and suggest that the presence of HFA-GlcCer and HFA-sphingomyelin in Cgt-/- mice does not functionally compensate the loss of HFA-GalCer.