Email updates

Keep up to date with the latest news and content from BMC Neuroscience and BioMed Central.

This article is part of the supplement: Nineteenth Annual Computational Neuroscience Meeting: CNS*2010

Open Access Poster Presentation

Correlation transfer for integrate and fire models with finite postsynaptic potentials

Robert Rosenbaum* and Kresimir Josic

Author Affiliations

Mathematics, University of Houston, Houston, TX 77004, USA

For all author emails, please log on.

BMC Neuroscience 2010, 11(Suppl 1):P11  doi:10.1186/1471-2202-11-S1-P11


The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-2202/11/S1/P11


Published:20 July 2010

© 2010 Rosenbaum and Josic; licensee BioMed Central Ltd.

Poster Presentation

Correlations between the spiking activity of neurons have implications for coding and the dynamical behavior of neuronal networks [1-3]. A fundamental problem in the study of correlations in neuronal networks is that of correlation transfer: given neurons receiving correlated inputs, what is the correlation between their output spike trains? Earlier analytical approaches have addressed this question by modeling subthreshold activity as a continuous diffusion process [4-7]. Such models are obtained in the limit of a large number of inputs with infinitesimal postsynaptic response amplitudes. We address the problem of correlation transfer for models with finite postsynaptic responses.

We use random walk models to derive analytical results, then verify these results with current and conductance based leaky integrate-and-fire models. This approach yields intuitive insights into the mechanisms of correlation transfer in a variety of settings.

We first investigate correlation transfer for the simple and analytically tractable perfect integrate-and-fire (PIF) model, which approximates more realistic models in drift dominated regimes. We find that the PIF model preserves correlations perfectly under very general assumptions. We then extend the PIF model in order to consider the effects of synaptic noise and recurrent coupling on correlation transfer in drift dominated regimes.

We also derive an analytical expression to explain and quantify the reduction of correlations in fluctuation dominated regimes. We then use an analytically tractable leaky random walk model to explore the implications of this expression.

Acknowledgements

This work was supported by NSF Grants DMS-0604429 and DMS-0817649 and a Texas ARP/ATP award.

References

  1. Averbeck BB, Latham PE, Pouget A: Neural correlations, population coding and computation.

    Nat Rev Neurosci 2006, 7:358-366. PubMed Abstract | Publisher Full Text OpenURL

  2. Biederlack J, Castelo-Branco M, Neuenschwander S, Wheeler D, Singer W, Nikolic D: Brightness induction: rate enhancement and neuronal synchronization as complementary codes.

    Neuron 2006, 52:1073-1083. PubMed Abstract | Publisher Full Text OpenURL

  3. Sompolinsky H, Yoon H, Kang K, Shamir M: Population coding in neuronal systems with correlated Noise.

    Phys Rev E Stat Nonlin Soft Matter Phys 2001, 64(5 Pt 1):051904. PubMed Abstract | Publisher Full Text OpenURL

  4. de la Rocha J, Doiron B, Shea-Brown E, Josi´c K, Reyes A: Correlation between neural spike trains increases with firing rate.

    Nature 2007, 448:802-806. PubMed Abstract | Publisher Full Text OpenURL

  5. Moreno-Bote R, Parga N: Auto- and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses.

    Phys Rev Lett 2006, 96:028101. PubMed Abstract | Publisher Full Text OpenURL

  6. Ostojic S, Brunel N, Hakim V: How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains.

    J Neurosci 2009, 29:10234-10253. PubMed Abstract | Publisher Full Text OpenURL

  7. Vilela RD, Lindner B: Comparative study of different integrate-and-fire neurons: spontaneous activity, dynamical response, and stimulus-induced correlation.

    Phys Rev E Stat Nonlin Soft Matter Phys 2009, 80(3 Pt 1):031909. PubMed Abstract | Publisher Full Text OpenURL