Email updates

Keep up to date with the latest news and content from BMC Neuroscience and BioMed Central.

This article is part of the supplement: Eighteenth Annual Computational Neuroscience Meeting: CNS*2009

Open Access Poster presentation

Modulation of input gain and response gain by noisy synaptic input

Aslı Ayaz* and Frances S Chance

Author Affiliations

Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA

For all author emails, please log on.

BMC Neuroscience 2009, 10(Suppl 1):P182  doi:10.1186/1471-2202-10-S1-P182

The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-2202/10/S1/P182


Published:13 July 2009

© 2009 Ayaz and Chance; licensee BioMed Central Ltd.

Poster presentation

In visual cortex, the gain of neuronal responses can be modulated by a wide range of factors including basic characteristics of sensory stimuli, such as the contrast of a visual stimulus, and cognitive processes such as attention. We seek to examine different forms of gain modulation observed in vivo, uncover the biophysical mechanisms that underlie these different forms and determine how cortical circuitry implements these mechanisms. The effects of attention, for example, have been described as a modulation of response gain, in which neuronal responses are multiplicatively scaled by a constant factor [1-3]. Figure 1A and 1B demonstrate response-gain modulation of neuronal intensity curves (firing rate vs. stimulus intensity) and tuning curves, respectively. Other studies describe attentional effects as modulation of contrast gain [4-6], in which attention appears to divisively scale stimulus contrast. We refer to this latter form as "input-gain modulation," and show examples in Figure 2A and 2B.

thumbnailFigure 1. Response-gain modulation.

thumbnailFigure 2. Input-gain modulation.

We study the responses of a single-compartment spiking model neuron. In Figure 1 (panels C and D), the model neuron receives noisy excitatory and inhibitory synaptic input arising from "pooled" (as proposed by the "normalization model" [7]) local cortical activity. Increasing pooled activity, as might occur from adding additional visual stimuli or changing the attentional state of the animal, led to divisive response-gain modulation of neuronal intensity curves (firing rate vs. stimulus intensity) in Figure 1C and also neuronal tuning curves (firing rate vs. stimulus parameter) in Figure 1D. When the cortical architecture is modified to include mutual interactions between cortical pools, the effects of increasing modulatory input on intensity curves (Figure 2C) and tuning curves (Figure 2D) is more like input-gain modulation. Thus, both forms of gain modulation observed in vivo can be generated by noisy synaptic input, provided the associated cortical circuitry is configured properly.

References

  1. McAdams CJ, Maunsell JH: Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4.

    J Neurosci 1999, 19:431-441. PubMed Abstract | Publisher Full Text OpenURL

  2. Treue S, Martínez-Trujillo JC: Feature based attention influences motion processing gain in macaque visual cortex.

    Nature 1999, 399:575-579. PubMed Abstract | Publisher Full Text OpenURL

  3. Williford T, Maunsell JH: Effects of spatial attention on contrast response functions in macaque area V4.

    J Neurophysiol 2006, 96:40-54. PubMed Abstract | Publisher Full Text OpenURL

  4. Reynolds JH, Desimone R: The role of neuronal mechanisms of attention in solving the binding problem.

    Neuron 1999, 24:19-29. PubMed Abstract | Publisher Full Text OpenURL

  5. Reynolds JH, Pasternak T, Desimone R: Attention increases sensitivity of V4 neurons.

    Neuron 2000, 26:703-714. PubMed Abstract | Publisher Full Text OpenURL

  6. Martínez-Trujillo JC, Treue S: Attentional modulation strength in cortical area MT depends on stimulus contrast.

    Neuron 2002, 35:365-370. PubMed Abstract | Publisher Full Text OpenURL

  7. Heeger DJ: Normalization of cell responses in cat striate cortex.

    Vis Neurosci 1992, 9:181-197. PubMed Abstract | Publisher Full Text OpenURL