Open Access Highly Accessed Research article

Notch signaling is required for maintaining stem-cell features of neuroprogenitor cells derived from human embryonic stem cells

Sun-Mi Woo1, Janghwan Kim1, Hyo-Won Han1, Jung-Il Chae12, Mi-Young Son1, Sunwha Cho1, Hyung-Min Chung2, Yong-Mahn Han3 and Yong-Kook Kang1*

Author Affiliations

1 Development and Differentiation Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, South Korea

2 Stem Cell Research Laboratory, CHA Stem Cell Institute, Pochon Cha University, Seoul, Republic of Korea

3 Department of Biological Sciences, Korean Advanced Institute of Science and Technology, Guseong-Dong, Yuseong-Gu, Daejeon 305-701, South Korea

For all author emails, please log on.

BMC Neuroscience 2009, 10:97  doi:10.1186/1471-2202-10-97

Published: 17 August 2009



Studies have provided important findings about the roles of Notch signaling in neural development. Unfortunately, however, most of these studies have investigated the neural stem cells (NSCs) of mice or other laboratory animals rather than humans, mainly owing to the difficulties associated with obtaining human brain samples. It prompted us to focus on neuroectodermal spheres (NESs) which are derived from human embryonic stem cell (hESC) and densely inhabited by NSCs. We here investigated the role of Notch signaling with the hESC-derived NESs.


From hESCs, we derived NESs, the in-vitro version of brain-derived neurospheres. NES formation was confirmed by increased levels of various NSC marker genes and the emergence of rosette structures in which neuroprogenitors are known to reside. We found that Notch signaling, which maintains stem cell characteristics of in-vivo-derived neuroprogenitors, is active in these hESC-derived NESs, similar to their in-vivo counterpart. Expression levels of Notch signaling molecules such as NICD, DLLs, JAG1, HES1 and HES5 were increased in the NESs. Inhibition of the Notch signaling by a γ-secretase inhibitor reduced rosette structures, expression levels of NSC marker genes and proliferation potential in the NESs, and, if combined with withdrawal of growth factors, triggered differentiation toward neurons.


Our results indicate that the hESC-derived NESs, which share biochemical features with brain-derived neurospheres, maintain stem cell characteristics mainly through Notch signaling, which suggests that the hESC-derived NESs could be an in-vitro model for in-vivo neurogenesis.