Email updates

Keep up to date with the latest news and content from BMC Neuroscience and BioMed Central.

Open Access Highly Accessed Research article

Evidence for cognitive vestibular integration impairment in idiopathic scoliosis patients

Martin Simoneau12*, Vincent Lamothe1, Émilie Hutin1, Pierre Mercier1, Normand Teasdale12 and Jean Blouin3

Author Affiliations

1 Faculté de Médecine, Université Laval, Québec, Canada

2 Centre de recherche sur le vieillissement de Québec du Centre de recherche FRSQ - Hôpital Saint-Sacrement, Québec, Canada

3 Neurobiology and Cognition Laboratory, CNRS and Aix Marseille University, Marseille, France

For all author emails, please log on.

BMC Neuroscience 2009, 10:102  doi:10.1186/1471-2202-10-102

Published: 25 August 2009

Abstract

Background

Adolescent idiopathic scoliosis is characterized by a three-dimensional deviation of the vertebral column and its etiopathogenesis is unknown. Various factors cause idiopathic scoliosis, and among these a prominent role has been attributed to the vestibular system. While the deficits in sensorimotor transformations have been documented in idiopathic scoliosis patients, little attention has been devoted to their capacity to integrate vestibular information for cognitive processing for space perception. Seated idiopathic scoliosis patients and control subjects experienced rotations of different directions and amplitudes in the dark and produced saccades that would reproduce their perceived spatial characteristics of the rotations (vestibular condition). We also controlled for possible alteration of the oculomotor and vestibular systems by measuring the subject's accuracy in producing saccades towards memorized peripheral targets in absence of body rotation and the gain of their vestibulo-ocular reflex.

Results

Compared to healthy controls, the idiopathic scoliosis patients underestimated the amplitude of their rotations. Moreover, the results revealed that idiopathic scoliosis patients produced accurate saccades to memorized peripheral targets in absence of body rotation and that their vestibulo-ocular reflex gain did not differ from that of control participants.

Conclusion

Overall, results of the present study demonstrate that idiopathic scoliosis patients have an alteration in cognitive integration of vestibular signals. It is possible that severe spine deformity developed partly due to impaired vestibular information travelling from the cerebellum to the vestibular cortical network or alteration in the cortical mechanisms processing the vestibular signals.