Email updates

Keep up to date with the latest news and content from BMC Molecular Biology and BioMed Central.

Open Access Research article

Recombination Phenotypes of Escherichia coli greA Mutants

Anthony R Poteete

Author Affiliations

Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA

BMC Molecular Biology 2011, 12:12  doi:10.1186/1471-2199-12-12

Published: 31 March 2011

Abstract

Background

The elongation factor GreA binds to RNA polymerase and modulates transcriptional pausing. Some recent research suggests that the primary role of GreA may not be to regulate gene expression, but rather, to promote the progression of replication forks which collide with RNA polymerase, and which might otherwise collapse. Replication fork collapse is known to generate dsDNA breaks, which can be recombinogenic. It follows that GreA malfunction could have consequences affecting homologous recombination.

Results

Escherichia coli mutants bearing substitutions of the active site acidic residues of the transcription elongation factor GreA, D41N and E44K, were isolated as suppressors of growth inhibition by a toxic variant of the bacteriophage lambda Red-beta recombination protein. These mutants, as well as a D41A greA mutant and a greA deletion, were tested for proficiency in recombination events. The mutations were found to increase the efficiency of RecA-RecBCD-mediated and RecA-Red-mediated recombination, which are replication-independent, and to decrease the efficiency of replication-dependent Red-mediated recombination.

Conclusion

These observations provide new evidence for a role of GreA in resolving conflicts between replication and transcription.