Email updates

Keep up to date with the latest news and content from BMC Molecular Biology and BioMed Central.

Open Access Research article

Two storage hexamerins from the beet armyworm Spodoptera exigua: Cloning, characterization and the effect of gene silencing on survival

Bin Tang1, Shigui Wang1* and Fan Zhang2*

Author Affiliations

1 Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China

2 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China

For all author emails, please log on.

BMC Molecular Biology 2010, 11:65  doi:10.1186/1471-2199-11-65

Published: 31 August 2010

Abstract

Background

In insects, hemocyanin superfamily proteins accumulate apparently to serve as sources of amino acids during metamorphosis, reproduction and development. Storage hexamerins are important members of the hemocyanin superfamily. Although insects possess storage hexamerins, very little is known about the character and specific functions of hexamerin 1 and storage protein 1 in insect development.

Results

To gain insight into the function of storage proteins in insects, cDNAs for two storage proteins were cloned from the fat body of Spodoptera exigua. S. exigua hexamerin 1 (SeHex) cDNA contained an open reading frame of 2124 nucleotides encoding a protein of 707 amino acids with a predicted molecular weight of 82.12 kDa. S. exigua storage protein 1 (SeSP1) cDNA contained an open reading frame of 2256 bp encoding a protein of 751 amino acids with a predicted molecular weight of ~88.84 kDa. Northern blotting analyses revealed that SeHex mRNA is expressed in the fat body, cuticle, midgut and Malpighian tubules and SeSP1 in fat body, Malpighian tubules and tracheae. SeHex and SeSP1 mRNAs were expressed in fat body at different levels from first instar larvae to pupae, with expression was much lower from first instar larvae to first-day fifth instar larvae. SeHex transcript expression was high in fat body of wandering larvae (pre-pupae) and steadily decreased to the seventh pupal day. SeSP1 transcript expression was high in fat body of wandering larvae, 2-day-old fifth instar larvae and 2-, 4- and 7-day-old pupae. SeHex and SeSP1 mRNAs levels were expressed lower than control on the condition of starvation at 12 h. Of insects injected with SeHex and SeSP1 dsRNA, 38.7% and 24.3% survived to 204 h after treatment, respectively. This was significantly lower than in the controls groups.

Conclusions

These findings provide new data on the tissue distribution, expression patterns and the function in starvation of storage proteins. RNA interference results revealed that storage protein genes are key in metamorphosis, reproduction and insect development. The results for SeHex and SeSP1 interference reveal that a potential method to control this pest is to disrupt the regulation of storage proteins.