Email updates

Keep up to date with the latest news and content from BMC Microbiology and BioMed Central.

Open Access Open Badges Research article

Involvement of RNA-binding protein Hfq in the osmotic-response regulation of invE gene expression in Shigella sonnei

Jiro Mitobe1, Tomoko Morita-Ishihara1, Akira Ishihama2 and Haruo Watanabe1*

Author affiliations

1 Department of Bacteriology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan

2 Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan

For all author emails, please log on.

Citation and License

BMC Microbiology 2009, 9:110  doi:10.1186/1471-2180-9-110

Published: 28 May 2009



The expression of Type III secretion system (TTSS) in Shigella is regulated in response to changes in environmental osmolarity and temperature. Temperature-dependent regulation of virF, the master regulator of TTSS synthesis, is believed to occur at the transcriptional level. We recently demonstrated, however, that TTSS synthesis also involves post-transcriptional regulation of the synthesis of InvE, a target of virF and key regulator of TTSS synthesis. The mRNA levels of invE (virB) are stable at 37°C, but mRNA stability markedly decreases at low temperatures where the TTSS synthesis is tightly repressed. Deletion of hfq, which encodes an RNA chaperone in Gram-negative bacteria, results in the restoration of expression of invE and other TTSS genes at low temperature due to an increase in the stability of invE mRNA. To date, the molecular details of the regulation of TTSS expression in response to osmotic pressure are not known. In the current study, we investigated the mechanism of regulation of TTSS by osmotic pressure.


Transcription of virF, which encodes the master regulator of TTSS expression, was partially repressed under low osmotic conditions. Several lines of evidence indicated that osmolarity-dependent changes in TTSS synthesis are controlled at the post-transcriptional level, through the regulation of InvE synthesis. First, the expression InvE protein was tightly repressed under low osmotic growth conditions, even though invE mRNA transcripts were readily detectable. Second, under low osmotic conditions, invE mRNA was rapidly degraded, whereas deletion of hfq, which encodes an RNA chaperone, resulted in increased invE mRNA stability and the production of InvE protein. Third, the binding of purified Hfq in vitro to invE RNA was stronger in low-salt buffer, as assessed by gel-shift analysis and surface plasmon resonance (Biacore analysis).


Osmolarity-dependent changes in TTSS synthesis in Shigella involve the post-transcriptional regulation of InvE expression, in addition to partial transcriptional activation by virF. The stability of invE mRNA is reduced under low osmotic conditions, similar to the effect of temperature. Deletion of an RNA chaperone gene (hfq) abolished the repression of TTSS synthesis at low osmolarity through a mechanism that involved increased stability of invE mRNA. We propose that the expression of Shigella virulence genes in response to both osmolarity and temperature involves the post-transcriptional regulation of expression of InvE, a critical regulator of TTSS synthesis.