Email updates

Keep up to date with the latest news and content from BMC Microbiology and BioMed Central.

Open Access Highly Accessed Methodology article

Extended-Spectrum β-lactamase (ESBL) producing Enterobacter aerogenes phenotypically misidentified as Klebsiella pneumoniae or K. terrigena

Geert Claeys1, Thierry De Baere1, Georges Wauters2, Patricia Vandecandelaere3, Gerda Verschraegen1, An Muylaert4 and Mario Vaneechoutte1*

Author Affiliations

1 Department of Microbiology, Ghent University Hospital, Ghent, Belgium

2 Unit of Medical Microbiology, Université Catholique Louvain, Brussels, Belgium

3 Department of Microbiology, Jan Yperman Hospital, Ieper, Belgium

4 Department of Microbiology, Streeklaboratorium Zeeuws-Vlaanderen, Terneuzen, The Netherlands

For all author emails, please log on.

BMC Microbiology 2004, 4:49  doi:10.1186/1471-2180-4-49

Published: 24 December 2004

Abstract

Background

Enterobacter aerogenes and Klebsiella pneumoniae are common isolates in clinical microbiology and important as producers of extended spectrum β-lactamases (ESBL). The discrimination between both species, which is routinely based on biochemical characteristics, is generally accepted to be straightforward. Here we report that genotypically unrelated strains of E. aerogenes can be misidentified as K. pneumoniae by routine laboratories using standard biochemical identification and using identification automates.

Results

Ten clinical isolates, identified as K. pneumoniae or K. terrigena with the routinely used biochemical tests and with API-20E, were identified as E. aerogenes by tDNA-PCR – an identification that was confirmed by 16S rRNA gene sequencing for five of these isolates. Misidentification also occurred when using the automated identification systems Vitek 2 and Phoenix, and was due to delayed positivity for ornithine decarboxylase and motility. Subculture and prolonged incubation resulted in positive results for ornithine decarboxylase and for motility. It could be shown by RAPD-analysis that the E. aerogenes strains belonged to different genotypes.

Conclusions

Clinical E. aerogenes isolates can be easily misidentified as Klebsiella due to delayed positivity for ornithine decarboxylase and motility. The phenomenon may be widespread, since it was shown to occur among genotypically unrelated strains from different hospitals and different isolation dates. A useful clue for correct identification is the presence of an inducible β-lactamase, which is highly unusual for K. pneumoniae. In several instances, the use of genotypic techniques like tDNA-PCR may circumvent problems of phenotypic identification.