Email updates

Keep up to date with the latest news and content from BMC Microbiology and BioMed Central.

Open Access Research article

Antibiotics influence the toxicity of the delta endotoxins of Bacillus thuringiensis towards the cotton bollworm, Helicoverpa armigera

Inakarla Paramasiva12, Hari C Sharma1* and Pulipaka Venkata Krishnayya2

Author Affiliations

1 International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324 Andhra Pradesh, India

2 Acharya N G Ranga Agricultural University, Agricultural College, Bapatla, Andhra Pradesh, India

For all author emails, please log on.

BMC Microbiology 2014, 14:200  doi:10.1186/1471-2180-14-200

Published: 24 July 2014

Abstract

Background

The cotton bollworm, Helicoverpa armigera is one of the most important crop pests worldwide. It has developed high levels of resistance to synthetic insecticides, and hence, Bacillus thuringiensis (Bt) formulations are used as a safer pesticide and the Bt genes have been deployed in transgenic crops for controlling this pest. There is an apprehension that H. armigera might develop resistance to transgenic crops in future. Therefore, we studied the role of gut microbes by eliminating them with antibiotics in H. armigera larvae on the toxicity of Bt toxins against this pest.

Results

Commercial formulation of Bt (Biolep®) and the pure Cry1Ab and Cry1Ac toxin proteins were evaluated at ED50, LC50, and LC90 dosages against the H. armigera larvae with and without antibiotics (which removed the gut microbes). Lowest H. armigera larval mortality due to Bt formulation and the Bt toxins Cry1Ab and Cry1Ac was recorded in insects reared on diets with 250 and 500 μg ml−1 diet of each of the four antibiotics (gentamicin, penicillin, rifampicin, and streptomycin), while the highest larval mortality was recorded in insects reared on diets without the antibiotics. Mortality of H. armigera larvae fed on diets with Bt formulation and the δ-endotoxins Cry1Ab and Cry1Ac was inversely proportional to the concentration of antibiotics in the artificial diet. Nearly 30% reduction in larval mortality was observed in H. armigera larvae from F1 to F3 generation when the larvae were reared on diets without antibiotics (with gut microbes) and fed on 0.15% Bt or 12 μg Cry1Ab or Cry1Ac ml−1 diet, indicating development of resistance to Bt in the presence of gut microflora. However, there were no differences in larval mortality due to Bt, Cry1Ab or Cry1Ac across generations in insects when they were reared on diets with 250 μg of each antibiotic ml−1 diet (without gut microflora).

Conclusions

The results suggested that antibiotics which eliminated gut microflora influenced the toxicity of Bt towards H. armigera, and any variation in diversity and abundance of gut microflora will have a major bearing on development of resistance to Bt toxins applied as foliar sprays or deployed in transgenic crops for pest management.