Open Access Open Badges Research article

Lactobacillus GG restoration of the gliadin induced epithelial barrier disruption: the role of cellular polyamines

Antonella Orlando1, Michele Linsalata1, Maria Notarnicola2, Valeria Tutino2 and Francesco Russo1*

Author Affiliations

1 Laboratory of Nutritional Pathophysiology, National Institute for Digestive Diseases I.R.C.C.S. “Saverio de Bellis”, via Turi 27, I-70013 Castellana Grotte, BA, Italy

2 Laboratory of Nutritional Biochemistry, National Institute for Digestive Diseases I.R.C.C.S. “Saverio de Bellis”, via Turi 27, I-70013 Castellana Grotte, BA, Italy

For all author emails, please log on.

BMC Microbiology 2014, 14:19  doi:10.1186/1471-2180-14-19

Published: 31 January 2014



Celiac disease is characterized by enhanced intestinal paracellular permeability due to alterations of function and expression of tight junction (TJ) proteins including ZO-1, Claudin-1 and Occludin. Polyamines are pivotal in the control of intestinal barrier function and are also involved in the regulation of intercellular junction proteins. Different probiotic strains may inhibit gliadin-induced toxic effects and the Lactobacillus rhamnosus GG (L.GG) is effective in the prevention and treatment of gastrointestinal diseases. Aims of the study were to establish in epithelial Caco-2 cells whether i) gliadin affects paracellular permeability and polyamine profile; ii) co-administration of viable L.GG, heat-killed L.GG (L.GG-HK) or its conditioned medium (L.GG-CM) preserves the intestinal epithelial barrier integrity. Additionally, the effects of L.GG on TJ protein expression were tested in presence or absence of polyamines.


Administration of gliadin (1 mg/ml) to Caco-2 cells for 6 h caused a significant alteration of paracellular permeability as demonstrated by the rapid decrease in transepithelial resistance with a concomitant zonulin release. These events were followed by a significant increase in lactulose paracellular transport and a slight lowering in ZO-1 and Occludin expression without affecting Claudin-1. Besides, the single and total polyamine content increased significantly. The co-administration of viable L.GG (108 CFU/ml), L.GG-HK and L.GG-CM with gliadin significantly restored barrier function as demonstrated by transepithelial resistance, lactulose flux and zonulin release. Viable L.GG and L.GG-HK, but not L.GG-CM, led to a significant reduction in the single and total polyamine levels. Additionally, only the co-administration of viable L.GG with gliadin significantly increased ZO-1, Claudin-1 and Occludin gene expression compared to control cells. When Caco-2 cells treated with viable L.GG and gliadin were deprived in the polyamine content by α-Difluoromethylornithine, the expression of TJ protein mRNAs was not significantly different from that in controls or cells treated with gliadin alone.


Gliadin modifies the intestinal paracellular permeability and significantly increases the polyamine content in Caco-2 cells. Concomitant administration of L.GG is able to counteract these effects. Interestingly, the presence of cellular polyamines is necessary for this probiotic to exert its capability in restoring paracellular permeability by affecting the expression of different TJ proteins.

Caco-2 cells; Celiac disease; Gliadin; Intestinal barrier function; Lactobacillus rhamnosus GG; Paracellular permeability; Polyamines; Tight junction proteins