Email updates

Keep up to date with the latest news and content from BMC Microbiology and BioMed Central.

Open Access Research article

The mosaic accessory gene structures of the SXT/R391-like integrative and conjugative elements derived from Vibrio spp. isolated from aquatic products and environment in the Yangtze River estuary, China

Yuze Song1, Pan Yu1, Bailin Li1, Yingjie Pan1, Xiaojun Zhang2, Jian Cong1, Yinying Zhao1, Hua Wang3 and Lanming Chen1*

Author Affiliations

1 Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, Engineering Centre for Quality Control and Risk Assessment of Aquatic Products, College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai 201306, PR China

2 Shanghai Center for Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan road, Minhang Campus, Shanghai 200240, PR China

3 The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA

For all author emails, please log on.

BMC Microbiology 2013, 13:214  doi:10.1186/1471-2180-13-214

Published: 30 September 2013

Abstract

Background

The emergence, resurgence and spread of human food-borne pathogenic Vibrios are one of the major contributors to disease burden and mortality particularly in developing countries with disputable sanitary conditions. Previous research on pathogenic Vibrio cholerae and Vibrio parahaemolitycus derived from clinical samples has proposed links between acquisition of virulence and multiple drug resistance traits and intercellular transmissibility of mobile genetic elements in the environment. To date, very few information is available on environmental Vibrio isolates. In this study, we characterized eleven Vibrio strains bearing the SXT/R391-like integrative and conjugative elements (ICEs) derived from aquatic products and environment in the Yangtze River Estuary, China.

Results

The eleven Vibrio strains were isolated in 2010 to 2011, and taxonomically identified, which included six Vibrio cholerae, three Vibrio parahaemolyticus, one Vibrio alginolyticus and one Vibrio natriegens. Most of the strains displayed strong resistance phenotypes to ampicillin, mercury and chromium. The majority of their ICEs, which belong to S and R exclusion system groups, contain ICEs-chromosome junction sequences and highly conserved core-genes required for ICE transfer. However, comparative sequence analysis uncovered interesting diversity in their mosaic accessory gene structures, which carry many novel genes that have not been described in any known ICEs to date. In addition, antibiotic resistance was transmitted by ICEVchChn6 and ICEVpaChn1 from V. cholerae, V. parahaemolyticus to E. coli MG1655 via conjugation, respectively. Our data also revealed that the ICEs characterized in this study are phylogenetically distant from most of the SXT/R391 ICEs reported previously, which may represent a novel cluster likely shaped by the ecological environment in the Yangtze River Estuary, China.

Conclusions

This study constitutes the first investigation of ICEs-positive Vibrio spp. in the Yangze River Estuary, China. The newly identified ICEs were characterized with mosaic accessory gene structures and many novel genes. The results demonstrated self-transmissibility of antibiotic resistance mediated by two of the ICEs from V. cholerae, V. parahaemolyticus to E. coli via conjugation, respectively. Our results also revealed that the ICEs examined in this study may represent a novel cluster in the SXT/R391 family.

Keywords:
Vibrios; ICEs; Drug and heavy metal resistance; Aquatic products; Estuary