Email updates

Keep up to date with the latest news and content from BMC Microbiology and BioMed Central.

Open Access Open Badges Research article

Acanthamoeba produces disseminated infection in locusts and traverses the locust blood-brain barrier to invade the central nervous system

Parisa N Mortazavi1, Graham Goldsworthy1, Ruth Kirk2 and Naveed A Khan3*

Author Affiliations

1 School of Biological and Chemical Sciences, Birkbeck, University of London, London, UK

2 School of Life Sciences, Kingston University, Kingston-Upon-Thames, Surrey, UK

3 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK

For all author emails, please log on.

BMC Microbiology 2010, 10:186  doi:10.1186/1471-2180-10-186

Published: 8 July 2010



Many aspects of Acanthamoeba granulomatous encephalitis remain poorly understood, including host susceptibility and chronic colonization which represent important features of the spectrum of host-pathogen interactions. Previous studies have suggested locusts as a tractable model in which to study Acanthamoeba pathogenesis. Here we determined the mode of parasite invasion of the central nervous system (CNS).


Using Acanthamoeba isolates belonging to the T1 and T4 genotypes, the findings revealed that amoebae induced sickness behaviour in locusts, as evidenced by reduced faecal output and weight loss and, eventually, leading to 100% mortality. Significant degenerative changes of various tissues were observed by histological sectioning. Both isolates produced disseminated infection, with viable amoebae being recovered from various tissues. Histological examination of the CNS showed that Acanthamoeba invaded the locust CNS, and this is associated with disruption of the perineurium cell/glial cell complex, which constitutes the locust blood-brain barrier.


This is the first study to demonstrate that Acanthamoeba invades locust brain by modulating the integrity of the insect's blood-brain barrier, a finding that is consistent with the human infection. These observations support the idea that locusts provide a tractable model to study Acanthamoeba encephalitis in vivo. In this way the locust model may generate potentially useful leads that can be tested subsequently in mammalian systems, thus replacing the use of vertebrates at an early stage, and reducing the numbers of mammals required overall.