Open Access Highly Accessed Research article

Bystander T cells in human immune responses to dengue antigens

Duangchan Suwannasaen, Arunrat Romphruk, Chanvit Leelayuwat and Ganjana Lertmemongkolchai*

Author Affiliations

The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand

For all author emails, please log on.

BMC Immunology 2010, 11:47  doi:10.1186/1471-2172-11-47

Published: 20 September 2010



Previous studies of T cell activation in dengue infection have focused on restriction of specific T cell receptors (TCRs) and classical MHC molecules. However, bystander T cell activation, which is TCR independent, occurs via cytokines in other viral infections, both in vitro and in vivo, and enables T cells to bypass certain control checkpoints. Moreover, clinical and pathological evidence has pointed to cytokines as the mediators of dengue disease severity. Therefore, we investigated bystander T cell induction by dengue viral antigen.


Whole blood samples from 55 Thai schoolchildren aged 13-14 years were assayed for in vitro interferon-gamma (IFN-γ) induction in response to inactivated dengue serotype 2 antigen (Den2). The contribution of TCR-dependent and independent pathways was tested by treatment with cyclosporin A (CsA), which inhibits TCR-dependent activation of T cells. ELISA results revealed that approximately 72% of IFN-γ production occurred via the TCR-dependent pathway. The major IFN-γ sources were natural killer (NK) (mean ± SE = 55.2 ± 3.3), CD4+T (24.5 ± 3.3) and CD8+T cells (17.9 ± 1.5), respectively, as demonstrated by four-color flow cytometry. Interestingly, in addition to these cells, we found CsA-resistant IFN-γ producing T cells (CD4+T = 26.9 ± 3.6% and CD8+T = 20.3 ± 2.1%) implying the existence of activated bystander T cells in response to dengue antigen in vitro. These bystander CD4+ and CD8+T cells had similar kinetics to NK cells, appeared after 12 h and were inhibited by anti-IL-12 neutralization indicating cytokine involvement.


This study described immune cell profiles and highlighted bystander T cell activation in response to dengue viral antigens of healthy people in an endemic area. Further studies on bystander T cell activation in dengue viral infection may reveal the immune mechanisms that protect or enhance pathogenesis of secondary dengue infection.