Open Access Highly Accessed Research article

Correlation between the secondary structure of pre-mRNA introns and the efficiency of splicing in Saccharomyces cerevisiae

Sanja Rogic12*, Ben Montpetit34, Holger H Hoos1, Alan K Mackworth1, BF Francis Ouellette5 and Philip Hieter3

Author Affiliations

1 Department of Computer Science, University of British Columbia, Vancouver, Canada

2 Center for High-Throughput Biology, University of British Columbia, Vancouver, Canada

3 Michael Smith Laboratories, University of British Columbia, Vancouver, Canada

4 Centre for Molecular Medicine and Therapeutics, Vancouver, Canada

5 Ontario Institute for Cancer Research, Toronto, Canada

For all author emails, please log on.

BMC Genomics 2008, 9:355  doi:10.1186/1471-2164-9-355

Published: 29 July 2008



Secondary structure interactions within introns have been shown to be essential for efficient splicing of several yeast genes. The nature of these base-pairing interactions and their effect on splicing efficiency were most extensively studied in ribosomal protein gene RPS17B (previously known as RP51B). It was determined that complementary pairing between two sequence segments located downstream of the 5' splice site and upstream of the branchpoint sequence promotes efficient splicing of the RPS17B pre-mRNA, presumably by shortening the branchpoint distance. However, no attempts were made to compute a shortened, 'structural' branchpoint distance and thus the functional relationship between this distance and the splicing efficiency remains unknown.


In this paper we use computational RNA secondary structure prediction to analyze the secondary structure of the RPS17B intron. We show that it is necessary to consider suboptimal structure predictions and to compute the structural branchpoint distances in order to explain previously published splicing efficiency results. Our study reveals that there is a tight correlation between this distance and splicing efficiency levels of intron mutants described in the literature. We experimentally test this correlation on additional RPS17B mutants and intron mutants within two other yeast genes.


The proposed model of secondary structure requirements for efficient splicing is the first attempt to specify the functional relationship between pre-mRNA secondary structure and splicing. Our findings provide further insights into the role of pre-mRNA secondary structure in gene splicing in yeast and also offer basis for improvement of computational methods for splice site identification and gene-finding.