Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Highly Accessed Research article

Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells

Tatiana Tondreau*, Marielle Dejeneffe, Nathalie Meuleman, Basile Stamatopoulos, Alain Delforge, Philippe Martiat, Dominique Bron and Laurence Lagneaux

Author Affiliations

Institut Jules Bordet, Université Libre de Bruxelles (ULB), Laboratory of Experimental Hematology, 121, Bd de Waterloo, 1000 Brussels, Belgium

For all author emails, please log on.

BMC Genomics 2008, 9:166  doi:10.1186/1471-2164-9-166

Published: 11 April 2008

Abstract

Background

Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC) could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes.

Methods

BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin). By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3.

Results

Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin). Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin). Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3), NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate receptor channel (AMPA3) in the presence of two agonist glutamate, AMPA or CNQX antagonist.

Conclusion

Our results demonstrate that BM-MSC have the potential to differentiate in neuronal cells with specific gene expression and functional properties. BM-MSC are thus promising candidates for cell-based therapy of neurodegenerative diseases