Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Research article

Target genes of myostatin loss-of-function in muscles of late bovine fetuses

Isabelle Cassar-Malek1*, Florent Passelaigue1, Carine Bernard1, Jean Léger2 and Jean-François Hocquette1

Author Affiliations

1 Equipe Croissance et Métabolisme du Muscle, Unité de Recherche sur les Herbivores, UR1213, INRA Theix, 63122 Saint-Genès-Champanelle, France

2 PT transcriptome, Ouest Génopole, Institut du Thorax, Faculté de Médecine 1, rue Gaston Veil, 44035 Nantes cedex, France Faculté de Médecine 1, rue Gaston Veil, 44035 Nantes cedex, France

For all author emails, please log on.

BMC Genomics 2007, 8:63  doi:10.1186/1471-2164-8-63

Published: 1 March 2007

Abstract

Background

Myostatin, a muscle-specific member of the Transforming Growth Factor beta family, negatively regulates muscle development. Double-muscled (DM) cattle have a loss-of-function mutation in their myostatin gene responsible for the hypermuscular phenotype. Thus, these animals are a good model for understanding the mechanisms underpinning muscular hypertrophy. In order to identify individual genes or networks that may be myostatin targets, we looked for genes that were differentially expressed between DM and normal (NM) animals (n = 3 per group) in the semitendinosus muscle (hypertrophied in DM animals) at 260 days of fetal development (when the biochemical differentiation of muscle is intensive). A heterologous microarray (human and murine oligonucleotide sequences) of around 6,000 genes expressed in muscle was used.

Results

Many genes were found to be differentially expressed according to genetic type (some with a more than 5-fold change), and according to the presence of one or two functional myostatin allele(s). They belonged to various functional categories. The genes down-regulated in DM fetuses were mainly those encoding extracellular matrix proteins, slow contractile proteins and ribosomal proteins. The genes up-regulated in DM fetuses were mainly involved in the regulation of transcription, cell cycle/apoptosis, translation or DNA metabolism. These data highlight features indicating that DM muscle is shifted towards a more glycolytic metabolism, and has an altered extracellular matrix composition (e.g. down-regulation of COL1A1 and COL1A2, and up-regulation of COL4A2) and decreased adipocyte differentiation (down-regulation of C1QTNF3). The altered gene expression in the three major muscle compartments (fibers, connective tissue and intramuscular adipose tissue) is consistent with the well-known characteristics of DM cattle. In addition, novel potential targets of the myostatin gene were identified (MB, PLN, troponins, ZFHX1B).

Conclusion

Thus, the myostatin loss-of-function mutation affected several physiological processes involved in the development and determination of the functional characteristics of muscle tissue.