Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Research article

Dynamic gene expression in fish muscle during recovery growth induced by a fasting-refeeding schedule

Pierre-Yves Rescan1*, Jerome Montfort1, Cécile Rallière1, Aurélie Le Cam1, Diane Esquerré2 and Karine Hugot2

Author Affiliations

1 National Institute for Agricultural Research, Joint Research Unit for Fish Physiology, Biodiversity and the Environment, INRA Scribe, IFR140, Campus de Beaulieu, 35042 Rennes, France

2 CRB GADIE, INRA, DGA, Laboratoire de Radiobiologie et d'Etude du Genome, 78352 Jouy-en-Josas, France

For all author emails, please log on.

BMC Genomics 2007, 8:438  doi:10.1186/1471-2164-8-438

Published: 28 November 2007

Abstract

Background

Recovery growth is a phase of rapid growth that is triggered by adequate refeeding of animals following a period of weight loss caused by starvation. In this study, to obtain more information on the system-wide integration of recovery growth in muscle, we undertook a time-course analysis of transcript expression in trout subjected to a food deprivation-refeeding sequence. For this purpose complex targets produced from muscle of trout fasted for one month and from muscle of trout fasted for one month and then refed for 4, 7, 11 and 36 days were hybridized to cDNA microarrays containing 9023 clones.

Results

Significance analysis of microarrays (SAM) and temporal expression profiling led to the segregation of differentially expressed genes into four major clusters. One cluster comprising 1020 genes with high expression in muscle from fasted animals included a large set of genes involved in protein catabolism. A second cluster that included approximately 550 genes with transient induction 4 to 11 days post-refeeding was dominated by genes involved in transcription, ribosomal biogenesis, translation, chaperone activity, mitochondrial production of ATP and cell division. A third cluster that contained 480 genes that were up-regulated 7 to 36 days post-refeeding was enriched with genes involved in reticulum and Golgi dynamics and with genes indicative of myofiber and muscle remodelling such as genes encoding sarcomeric proteins and matrix compounds. Finally, a fourth cluster of 200 genes overexpressed only in 36-day refed trout muscle contained genes with function in carbohydrate metabolism and lipid biosynthesis. Remarkably, among the genes induced were several transcriptional regulators which might be important for the gene-specific transcriptional adaptations that underlie muscle recovery.

Conclusion

Our study is the first demonstration of a coordinated expression of functionally related genes during muscle recovery growth. Furthermore, the generation of a useful database of novel genes associated with muscle recovery growth will allow further investigations on particular genes, pathways or cellular process involved in muscle growth and regeneration.