Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Highly Accessed Research article

Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers

Chaotian Xie, Bing Li, Yan Xu, Dehua Ji and Changsheng Chen*

Author affiliations

Fisheries College, Jimei University, Xiamen, Fujian Province 361021, People's Republic of China

For all author emails, please log on.

Citation and License

BMC Genomics 2013, 14:107  doi:10.1186/1471-2164-14-107

Published: 16 February 2013



Pyropia haitanensis is an economically important mariculture crop in China and is also valuable in life science research. However, the lack of genetic information of this organism hinders the understanding of the molecular mechanisms of specific traits. Thus, high-throughput sequencing is needed to generate a number of transcriptome sequences to be used for gene discovery and molecular marker development.


In this study, high-throughput sequencing was used to analyze the global transcriptome of P. haitanensis. Approximately 103 million 90 bp paired-end reads were generated using an Illumina HiSeq 2000. De novo assembly with paired-end information yielded 24,575 unigenes with an average length of 645 bp. Based on sequence similarity searches with known proteins, a total of 16,377 (66.64%) genes were identified. Of these annotated unigenes, 5,471 and 9,168 unigenes were assigned to gene ontology and clusters of orthologous groups, respectively. Searching against the KEGG database indicated that 12,167 (49.51%) unigenes mapped to 124 KEGG pathways. Among the carbon fixation pathways, almost all the essential genes related to the C3- and C4-pathways for P. haitanensis were discovered. Significantly different expression levels of three key genes (Rubisco, PEPC and PEPCK) in different lifecycle stages of P. haitanensis indicated that the carbon fixation pathway in the conchocelis and thallus were different, and the C4-like pathway might play important roles in the conchocelis stage. In addition, 2,727 cSSRs loci were identified in the unigenes. Among them, trinucleotide SSRs were the dominant repeat motif (87.17%, 2,377) and GCC/CCG motifs were the most common repeats (60.07%, 1,638). High quality primers to 824 loci were designed and 100 primer pairs were randomly evaluated in six strains of P. haitanensis. Eighty-seven primer pairs successfully yielded amplicons.


This study generated a large number of putative P. haitanensis transcript sequences, which can be used for novel gene discovery and gene expression profiling analyses under different physiological conditions. A number of the cSSR markers identified can be used for molecular markers and will facilitate marker assisted selection in P. haitanensis breeding. These sequences and markers will provide valuable resources for further P. haitanensis studies.

Pyropia haitanensis; Transcriptome; Carbon fixation pathway; cSSR markers