Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

This article is part of the supplement: Proceedings of the 5th International Conference of the Brazilian Association for Bioinformatics and Computational Biology (X-meeting 2009)

Open Access Proceedings

The role of exon shuffling in shaping protein-protein interaction networks

Douglas V Cancherini1, Gustavo S França12 and Sandro J de Souza1*

Author Affiliations

1 Ludwig Institute for Cancer Research, São Paulo Branch, Brazil

2 Ph. D. Program, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil

For all author emails, please log on.

BMC Genomics 2010, 11(Suppl 5):S11  doi:10.1186/1471-2164-11-S5-S11

Published: 22 December 2010

Abstract

Background

Physical protein-protein interaction (PPI) is a critical phenomenon for the function of most proteins in living organisms and a significant fraction of PPIs are the result of domain-domain interactions. Exon shuffling, intron-mediated recombination of exons from existing genes, is known to have been a major mechanism of domain shuffling in metazoans. Thus, we hypothesized that exon shuffling could have a significant influence in shaping the topology of PPI networks.

Results

We tested our hypothesis by compiling exon shuffling and PPI data from six eukaryotic species: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Cryptococcus neoformans and Arabidopsis thaliana. For all four metazoan species, genes enriched in exon shuffling events presented on average higher vertex degree (number of interacting partners) in PPI networks. Furthermore, we verified that a set of protein domains that are simultaneously promiscuous (known to interact to multiple types of other domains), self-interacting (able to interact with another copy of themselves) and abundant in the genomes presents a stronger signal for exon shuffling.

Conclusions

Exon shuffling appears to have been a recurrent mechanism for the emergence of new PPIs along metazoan evolution. In metazoan genomes, exon shuffling also promoted the expansion of some protein domains. We speculate that their promiscuous and self-interacting properties may have been decisive for that expansion.