Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

This article is part of the supplement: International Workshop on Computational Systems Biology: Approaches to Analysis of Genome Complexity and Regulatory Gene Networks

Open Access Research

Collective motions and specific effectors: a statistical mechanics perspective on biological regulation

Alessandro Giuliani

Author affiliations

Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy

Citation and License

BMC Genomics 2010, 11(Suppl 1):S2  doi:10.1186/1471-2164-11-S1-S2

Published: 10 February 2010

Abstract

Background

The interaction of a multiplicity of scales in both time and space is a fundamental feature of biological systems. The complementation of macroscopic (entire organism) and microscopic (molecular biology) views with a mesoscopic level of analysis able to connect the different planes of investigation is urgently needed. This will allow to both obtain a general frame of reference for rationalizing the burden of data coming from high throughput technologies and to derive effective operational views on biological systems.

Results

The network paradigm in which microscopic level elements (nodes) are each other related by functional links so giving rise to both global (entire network) and local (specific) behavior is a promising metaphor to try and develop a statistical mechanics inspired approach for biological systems. Here we show the application of this paradigm to different systems going from yeast metabolism to murine macrophages response to immune stimulation.

Conclusions

The need to complement the purely molecular view with mesoscopic approaches is evident in all the studied examples that in turn demonstrate the untenability of the simple ergodic approach dominant in molecular biology in which the data coming from huge ensemble of cells are considered as relative to a single ‘average’ cell.