Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Highly Accessed Research article

Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes

Sota Fujii12, Tomohiko Kazama1, Mari Yamada1 and Kinya Toriyama1*

Author Affiliations

1 Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan

2 Current address: ARC Centre of Excellence in Computer Systems Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia

For all author emails, please log on.

BMC Genomics 2010, 11:209  doi:10.1186/1471-2164-11-209

Published: 29 March 2010

Abstract

Background

Plant mitochondrial genomes are known for their complexity, and there is abundant evidence demonstrating that this organelle is important for plant sexual reproduction. Cytoplasmic male sterility (CMS) is a phenomenon caused by incompatibility between the nucleus and mitochondria that has been discovered in various plant species. As the exact sequence of steps leading to CMS has not yet been revealed, efforts should be made to elucidate the factors underlying the mechanism of this important trait for crop breeding.

Results

Two CMS mitochondrial genomes, LD-CMS, derived from Oryza sativa L. ssp. indica (434,735 bp), and CW-CMS, derived from Oryza rufipogon Griff. (559,045 bp), were newly sequenced in this study. Compared to the previously sequenced Nipponbare (Oryza sativa L. ssp. japonica) mitochondrial genome, the presence of 54 out of 56 protein-encoding genes (including pseudo-genes), 22 tRNA genes (including pseudo-tRNAs), and three rRNA genes was conserved. Two other genes were not present in the CW-CMS mitochondrial genome, and one of them was present as part of the newly identified chimeric ORF, CW-orf307. At least 12 genomic recombination events were predicted between the LD-CMS mitochondrial genome and Nipponbare, and 15 between the CW-CMS genome and Nipponbare, and novel genetic structures were formed by these genomic rearrangements in the two CMS lines. At least one of the genomic rearrangements was completely unique to each CMS line and not present in 69 rice cultivars or 9 accessions of O. rufipogon.

Conclusion

Our results demonstrate novel mitochondrial genomic rearrangements that are unique in CMS cytoplasm, and one of the genes that is unique in the CW mitochondrial genome, CW-orf307, appeared to be the candidate most likely responsible for the CW-CMS event. Genomic rearrangements were dynamic in the CMS lines in comparison with those of rice cultivars, suggesting that 'death' and possible 'birth' processes of the CMS genes occurred during the breeding history of rice.