Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Research article

Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance

Milla Pietiäinen1, Patrice François2, Hanne-Leena Hyyryläinen1, Manuela Tangomo2, Vera Sass3, Hans-Georg Sahl3, Jacques Schrenzel2 and Vesa P Kontinen1*

Author Affiliations

1 Antimicrobial Resistance Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), PL 30, 00271 Helsinki, Finland

2 Genomic Research Laboratory, Service of Infectious Diseases, University Hospitals of Geneva, University of Geneva, 1211 Geneva-14, Switzerland

3 Institute for Medical Microbiology, Immunology and Parasitology, Pharmaceutical Microbiology Unit, University of Bonn, Bonn, Germany

For all author emails, please log on.

BMC Genomics 2009, 10:429  doi:10.1186/1471-2164-10-429

Published: 14 September 2009

Abstract

Background

Understanding how pathogens respond to antimicrobial peptides, and how this compares to currently available antibiotics, is crucial for optimizing antimicrobial therapy. Staphylococcus aureus has several known resistance mechanisms against human cationic antimicrobial peptides (CAMPs). Gene expression changes in S. aureus strain Newman exposed to linear CAMPs were analyzed by DNA microarray. Three antimicrobial peptides were used in the analysis, two are derived from frog, temporin L and dermaseptin K4-S4(1-16), and the ovispirin-1 is obtained from sheep.

Results

The peptides induced the VraSR cell-wall regulon and several other genes that are also up-regulated in cells treated with vancomycin and other cell wall-active antibiotics. In addition to this similarity, three genes/operons were particularly strongly induced by the peptides: vraDE, SA0205 and SAS016, encoding an ABC transporter, a putative membrane-bound lysostaphin-like peptidase and a small functionally unknown protein, respectively. Ovispirin-1 and dermaseptin K4-S4(1-16), which disrupt lipid bilayers by the carpet mechanism, appeared to be strong inducers of the vraDE operon. We show that high level induction by ovispirin-1 is dependent on the amide modification of the peptide C-terminus. This suggests that the amide group has a crucial role in the activation of the Aps (GraRS) sensory system, the regulator of vraDE. In contrast, temporin L, which disrupts lipid bilayers by forming pores, revealed a weaker inducer of vraDE despite the C-terminal amide modification. Sensitivity testing with CAMPs and other antimicrobials suggested that VraDE is a transporter dedicated to resist bacitracin. We also showed that SA0205 belongs to the VraSR regulon. Furthermore, VraSR was shown to be important for resistance against a wide range of cell wall-active antibiotics and other antimicrobial agents including the amide-modified ovispirin-1, bacitracin, teicoplanin, cefotaxime and 10 other β-lactam antibiotics, chlorpromazine, thioridazine and EGTA.

Conclusion

Defense against different CAMPs involves not only general signaling pathways but also CAMP-specific ones. These results suggest that CAMPs or a mixture of CAMPs could constitute a potential additive to standard antibiotic treatment.