Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Database

7TMRmine: a Web server for hierarchical mining of 7TMR proteins

Guoqing Lu12, Zhifang Wang3, Alan M Jones45 and Etsuko N Moriyama67*

Author Affiliations

1 Department of Computer Science, University of Nebraska at Omaha, Omaha, NE 68182, USA

2 Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA

3 Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0660, USA

4 Departments of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

5 Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

6 School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA

7 Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA

For all author emails, please log on.

BMC Genomics 2009, 10:275  doi:10.1186/1471-2164-10-275

Published: 19 June 2009

Abstract

Background

Seven-transmembrane region-containing receptors (7TMRs) play central roles in eukaryotic signal transduction. Due to their biomedical importance, thorough mining of 7TMRs from diverse genomes has been an active target of bioinformatics and pharmacogenomics research. The need for new and accurate 7TMR/GPCR prediction tools is paramount with the accelerated rate of acquisition of diverse sequence information. Currently available and often used protein classification methods (e.g., profile hidden Markov Models) are highly accurate for identifying their membership information among already known 7TMR subfamilies. However, these alignment-based methods are less effective for identifying remote similarities, e.g., identifying proteins from highly divergent or possibly new 7TMR families. In this regard, more sensitive (e.g., alignment-free) methods are needed to complement the existing protein classification methods. A better strategy would be to combine different classifiers, from more specific to more sensitive methods, to identify a broader spectrum of 7TMR protein candidates.

Description

We developed a Web server, 7TMRmine, by integrating alignment-free and alignment-based classifiers specifically trained to identify candidate 7TMR proteins as well as transmembrane (TM) prediction methods. This new tool enables researchers to easily assess the distribution of GPCR functionality in diverse genomes or individual newly-discovered proteins. 7TMRmine is easily customized and facilitates exploratory analysis of diverse genomes. Users can integrate various alignment-based, alignment-free, and TM-prediction methods in any combination and in any hierarchical order. Sixteen classifiers (including two TM-prediction methods) are available on the 7TMRmine Web server. Not only can the 7TMRmine tool be used for 7TMR mining, but also for general TM-protein analysis. Users can submit protein sequences for analysis, or explore pre-analyzed results for multiple genomes. The server currently includes prediction results and the summary statistics for 68 genomes.

Conclusion

7TMRmine facilitates the discovery of 7TMR proteins. By combining prediction results from different classifiers in a multi-level filtering process, prioritized sets of 7TMR candidates can be obtained for further investigation. 7TMRmine can be also used as a general TM-protein classifier. Comparisons of TM and 7TMR protein distributions among 68 genomes revealed interesting differences in evolution of these protein families among major eukaryotic phyla.