Email updates

Keep up to date with the latest news and content from BMC Genetics and BioMed Central.

Open Access Methodology article

A complete classification of epistatic two-locus models

Ingileif B Hallgrímsdóttir1* and Debbie S Yuster23

Author Affiliations

1 Department of Statistics, University of Oxford, 1 South Parks Road, OX1 3TG, UK

2 Department of Mathematics, Columbia University, New York, NY 10027, USA

3 DIMACS Center, Rutgers University, 96 Frelinghuysen Road, Piscataway, NJ 08854, USA

For all author emails, please log on.

BMC Genetics 2008, 9:17  doi:10.1186/1471-2156-9-17

Published: 19 February 2008



The study of epistasis is of great importance in statistical genetics in fields such as linkage and association analysis and QTL mapping. In an effort to classify the types of epistasis in the case of two biallelic loci Li and Reich listed and described all models in the simplest case of 0/1 penetrance values. However, they left open the problem of finding a classification of two-locus models with continuous penetrance values.


We provide a complete classification of biallelic two-locus models. In addition to solving the classification problem for dichotomous trait disease models, our results apply to any instance where real numbers are assigned to genotypes, and provide a complete framework for studying epistasis in QTL data. Our approach is geometric and we show that there are 387 distinct types of two-locus models, which can be reduced to 69 when symmetry between loci and alleles is accounted for. The model types are defined by 86 circuits, which are linear combinations of genotype values, each of which measures a fundamental unit of interaction.


The circuits provide information on epistasis beyond that contained in the additive × additive, additive × dominance, and dominance × dominance interaction terms. We discuss the connection between our classification and standard epistatic models and demonstrate its utility by analyzing a previously published dataset.