Email updates

Keep up to date with the latest news and content from BMC Genetics and BioMed Central.

Open Access Research article

Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox)

Martina Pokorná12, Lukáš Kratochvíl1* and Eduard Kejnovský3

Author Affiliations

1 Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Praha 2, Czech Republic

2 Department of Vertebrate Evolutionary Biology and Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 277 21 Liběchov, Czech Republic

3 Laboratory of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic

For all author emails, please log on.

BMC Genetics 2011, 12:90  doi:10.1186/1471-2156-12-90

Published: 20 October 2011

Abstract

Background

The accumulation of repetitive sequences such as microsatellites during the differentiation of sex chromosomes has not been studied in most squamate reptiles (lizards, amphisbaenians and snakes), a group which has a large diversity of sex determining systems. It is known that the Bkm repeats containing tandem arrays of GATA tetranucleotides are highly accumulated on the degenerated W chromosomes in advanced snakes. Similar, potentially homologous, repetitive sequences were found on sex chromosomes in other vertebrates. Using FISH with probes containing all possible mono-, di-, and tri-nucleotide sequences and GATA, we studied the genome distribution of microsatellite repeats on sex chromosomes in two lizard species (the gecko Coleonyx elegans and the lacertid Eremias velox) with independently evolved sex chromosomes. The gecko possesses heteromorphic euchromatic sex chromosomes, while sex chromosomes in the lacertid are homomorphic and the W chromosome is highly heterochromatic. Our aim was to test whether microsatellite distribution on sex chromosomes corresponds to the stage of their heteromorphism or heterochromatinization. Moreover, because the lizards lie phylogenetically between snakes and other vertebrates with the Bkm-related repeats on sex chromosomes, the knowledge of their repetitive sequence is informative for the determination of conserved versus convergently evolved repetitive sequences across vertebrate lineages.

Results

Heteromorphic sex chromosomes of C. elegans do not show any sign of microsatellite accumulation. On the other hand, in E. velox, certain microsatellite sequences are extensively accumulated over the whole length or parts of the W chromosome, while others, including GATA, are absent on this heterochromatinized sex chromosome.

Conclusion

The accumulation of microsatellite repeats corresponds to the stage of heterochromatinization of sex chromosomes rather than to their heteromorphism. The lack of GATA repeats on the sex chromosomes of both lizards suggests that the Bkm-related repeats on sex chromosomes in snakes and other vertebrates evolved convergently. The comparison of microsatellite sequences accumulated on sex chromosomes in E. velox and in other eukaryotic organisms suggests that historical contingency, not characteristics of particular sequences, plays a major role in the determination of which microsatellite sequence is accumulated on the sex chromosomes in a particular lineage.