Email updates

Keep up to date with the latest news and content from BMC Genetics and BioMed Central.

Open Access Open Badges Research article

Evolution of the nuclear ribosomal DNA intergenic spacer in four species of the Daphnia pulex complex

Cheryl D Ambrose and Teresa J Crease*

Author affiliations

Department of Integrative Biology, University of Guelph, Guelph, ON N1G2W1, Canada

For all author emails, please log on.

Citation and License

BMC Genetics 2011, 12:13  doi:10.1186/1471-2156-12-13

Published: 24 January 2011



Concerted evolution refers to the pattern in which copies of multigene families show high intraspecific sequence homogeneity but high interspecific sequence diversity. Sequence homogeneity of these copies depends on relative rates of mutation and recombination, including gene conversion and unequal crossing over, between misaligned copies. The internally repetitive intergenic spacer (IGS) is located between the genes for the 28S and 18S ribosomal RNAs. To identify patterns of recombination and/or homogenization within IGS repeat arrays, and to identify regions of the IGS that are under functional constraint, we analyzed 13 complete IGS sequences from 10 individuals representing four species in the Daphnia pulex complex.


Gene conversion and unequal crossing over between misaligned IGS repeats generates variation in copy number between arrays, as has been observed in previous studies. Moreover, terminal repeats are rarely involved in these events. Despite the occurrence of recombination, orthologous repeats in different species are more similar to one another than are paralogous repeats within species that diverged less than 4 million years ago. Patterns consistent with concerted evolution of these repeats were observed between species that diverged 8-10 million years ago. Sequence homogeneity varies along the IGS; the most homogeneous regions are downstream of the 28S rRNA gene and in the region containing the core promoter. The inadvertent inclusion of interspecific hybrids in our analysis uncovered evidence of both inter- and intrachromosomal recombination in the nonrepetitive regions of the IGS.


Our analysis of variation in ribosomal IGS from Daphnia shows that levels of homogeneity within and between species result from the interaction between rates of recombination and selective constraint. Consequently, different regions of the IGS are on substantially different evolutionary trajectories.