Email updates

Keep up to date with the latest news and content from BMC Genetics and BioMed Central.

Open Access Research article

A wild derived quantitative trait locus on mouse chromosome 2 prevents obesity

Md Bazlur R Mollah and Akira Ishikawa*

Author Affiliations

Laboratory of Animal Genetics, Division of Applied Genetics and Physiology, Department of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan

For all author emails, please log on.

BMC Genetics 2010, 11:84  doi:10.1186/1471-2156-11-84

Published: 23 September 2010



The genetic architecture of multifactorial traits such as obesity has been poorly understood. Quantitative trait locus (QTL) analysis is widely used to localize loci affecting multifactorial traits on chromosomal regions. However, large confidence intervals and small phenotypic effects of identified QTLs and closely linked loci are impeding the identification of causative genes that underlie the QTLs. Here we developed five subcongenic mouse strains with overlapping and non-overlapping wild-derived genomic regions from an F2 intercross of a previously developed congenic strain, B6.Cg-Pbwg1, and its genetic background strain, C57BL/6J (B6). The subcongenic strains developed were phenotyped on low-fat standard chow and a high-fat diet to fine-map a previously identified obesity QTL. Microarray analysis was performed with Affymetrix GeneChips to search for candidate genes of the QTL.


The obesity QTL was physically mapped to an 8.8-Mb region of mouse chromosome 2. The wild-derived allele significantly decreased white fat pad weight, body weight and serum levels of glucose and triglyceride. It was also resistant to the high-fat diet. Among 29 genes residing within the 8.8-Mb region, Gpd2, Upp2, Acvr1c, March7 and Rbms1 showed great differential expression in livers and/or gonadal fat pads between B6.Cg-Pbwg1 and B6 mice.


The wild-derived QTL allele prevented obesity in both mice fed a low-fat standard diet and mice fed a high-fat diet. This finding will pave the way for identification of causative genes for obesity. A further understanding of this unique QTL effect at genetic and molecular levels may lead to the discovery of new biological and pathologic pathways associated with obesity.