Email updates

Keep up to date with the latest news and content from BMC Genetics and BioMed Central.

Open Access Research article

Transcript profiling of candidate genes in testis of pigs exhibiting large differences in androstenone levels

Eli Grindflek1*, Ingunn Berget2, Maren Moe1, Paul Oeth3 and Sigbjørn Lien24

Author Affiliations

1 NORSVIN (The Norwegian Pig Breeders Association), Hamar, Norway

2 Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway

3 Research and Development, Sequenom, Inc., San Diego, CA. 92121, USA

4 Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway

For all author emails, please log on.

BMC Genetics 2010, 11:4  doi:10.1186/1471-2156-11-4

Published: 25 January 2010

Abstract

Background

Boar taint is an unpleasant odor and flavor of the meat and occurs in a high proportion of uncastrated male pigs. Androstenone, a steroid produced in testis and acting as a sex pheromone regulating reproductive function in female pigs, is one of the main compounds responsible for boar taint. The primary goal of the present investigation was to determine the differential gene expression of selected candidate genes related to levels of androstenone in pigs.

Results

Altogether 2560 boars from the Norwegian Landrace and Duroc populations were included in this study. Testicle samples from the 192 boars with most extreme high or low levels of androstenone in fat were used for RNA extraction, and 15 candidate genes were selected and analyzed by real-competitive PCR analysis. The genes Cytochrome P450 c17 (CYP17A1), Steroidogenic acute regulatory protein (STAR), Aldo-keto reductase family 1 member C4 (AKR1C4), Short-chain dehydrogenase/reductase family member 4 (DHRS4), Ferritin light polypeptide (FTL), Sulfotransferase family 2A, dehydroepiandrosterone-preferring member 1 (SULT2A1), Cytochrome P450 subfamily XIA polypeptide 1 (CYP11A1), Cytochrome b5 (CYB5A), and 17-beta-Hydroxysteroid dehydrogenase IV (HSD17B4) were all found to be significantly (P < 0.05) up-regulated in high androstenone boars in both Duroc and Landrace. Furthermore, Cytochrome P450 c19A2 (CYP19A2) was down-regulated and progesterone receptor membrane component 1 (PGRMC1) was up-regulated in high-androstenone Duroc boars only, while CYP21 was significantly down-regulated (2.5) in high-androstenone Landrace only. The genes Nuclear Receptor co-activator 4 (NCOA4), Sphingomyrlin phosphodiesterase 1 (SMPD1) and 3β-hydroxysteroid dehydrogenase (HSD3B) were not significantly differentially expressed in any breeds. Additionally, association studies were performed for the genes with one or more detected SNPs. Association between SNP and androstenone level was observed in CYB5A only, suggesting cis-regulation of the differential transcription in this gene.

Conclusion

A large pig material of highly extreme androstenone levels is investigated. The current study contributes to the knowledge about which genes that is differentially expressed regard to the levels of androstenone in pigs. Results in this paper suggest that several genes are important in the regulation of androstenone level in boars and warrant further evaluation of the above mentioned candidate genes, including analyses in different breeds, identification of causal mutations and possible gene interactions.