Email updates

Keep up to date with the latest news and content from BMC Genetics and BioMed Central.

Open Access Research article

Little ROCK is a ROCK1 pseudogene expressed in human smooth muscle cells

Maria Claudia Montefusco1, Kristen Merlo1, Crystal D Bryan1, Howard K Surks1, Steven E Reis2, Michael E Mendelsohn1 and Gordon S Huggins1*

Author Affiliations

1 Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston 02111, MA, USA

2 University of Pittsburgh, 3550 Terrace Street Pittsburgh, PA 15261, USA

For all author emails, please log on.

BMC Genetics 2010, 11:22  doi:10.1186/1471-2156-11-22

Published: 14 April 2010

Abstract

Background

Sequencing of the human genome has identified numerous chromosome copy number additions and subtractions that include stable partial gene duplications and pseudogenes that when not properly annotated can interfere with genetic analysis. As an example of this problem, an evolutionary chromosome event in the primate ancestral chromosome 18 produced a partial duplication and inversion of rho-associated protein kinase 1 (ROCK1 -18q11.1, 33 exons) in the subtelomeric region of the p arm of chromosome 18 detectable only in humans. ROCK1 and the partial gene copy, which the gene databases also currently call ROCK1, include non-unique single nucleotide polymorphisms (SNPs).

Results

Here, we characterize this partial gene copy of the human ROCK1, termed Little ROCK, located at 18p11.32. Little ROCK includes five exons, four of which share 99% identity with the terminal four exons of ROCK1 and one of which is unique to Little ROCK. In human while ROCK1 is expressed in many organs, Little ROCK expression is restricted to vascular smooth muscle cell (VSMC) lines and organs rich in smooth muscle. The single nucleotide polymorphism database (dbSNP) lists multiple variants contained in the region shared by ROCK1 and Little ROCK. Using gene and cDNA sequence analysis we clarified the origins of two non-synonymous SNPs annotated in the genome to actually be fixed differences between the ROCK1 and the Little ROCK gene sequences. Two additional coding SNPs were valid polymorphisms selectively within Little ROCK. Little ROCK-Green Fluorescent fusion proteins were highly unstable and degraded by the ubiquitin-proteasome system in vitro.

Conclusion

In this report we have characterized Little ROCK (ROCK1P1), a human expressed pseudogene derived from partial duplication of ROCK1. The large number of pseudogenes in the human genome creates significant genetic diversity. Our findings emphasize the importance of taking into consideration pseudogenes in all candidate gene and genome-wide association studies, as well as the need for complete annotation of human pseudogenome.