Email updates

Keep up to date with the latest news and content from BMC Genetics and BioMed Central.

Open Access Research article

A copy number variation in human NCF1 and its pseudogenes

Tiffany Brunson, Qingwei Wang, Isfahan Chambers and Qing Song*

Author affiliations

Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA

For all author emails, please log on.

Citation and License

BMC Genetics 2010, 11:13  doi:10.1186/1471-2156-11-13

Published: 23 February 2010



Neutrophil cytosolic factor-1 (NCF1) is a component of NADPH oxidase. The NCF1 gene colocalizes with two pseudogenes (NCF1B and NCF1C). These two pseudogenes have a GT deletion in exon 2, resulting in a frameshift and an early stop codon. Here, we report a copy number variation (CNV) of the NCF1 pseudogenes and their alternative spliced expressions.


We examined three normal populations (86 individuals). We observed the 2:2:2 pattern (NCF1B:NCF1:NCF1C) in only 26 individuals. On average, each African- American has 1.4 ± 0.8 (Mean ± SD) copies of NCF1B and 2.3 ± 0.6 copies of NCF1C; each Caucasian has 1.8 ± 0.7 copies of NCF1B and 1.9 ± 0.4 copies of NCF1C; and each Mexican has 1.6 ± 0.6 copies of NCF1B and 1.0 ± 0.4 copies of NCF1C. Mexicans have significantly less NCF1C copies than African-Americans (p = 6e-15) and Caucasians (p = 3e-11). Mendelian transmission of this CNV was observed in two CEPH pedigrees. Moreover, we cloned two alternative spliced transcripts generated from these two pseudogenes that adopt alternative exon-2 instead of their defective exon 2. The NCF1 pseudogene expression responded robustly to PMA induction during macrophage differentiation. NCF1B decreased from 32.9% to 8.3% in the cDNA pool transcribed from 3 gene copies. NCF1Ψs also displayed distinct expression patterns in different human tissues.


Our results suggest that these two pseudogenes may adopt an alternative exon-2 in different tissues and in response to external stimuli. The GT deletion is insufficient to define them as functionless pseudogenes; this CNV may have biological relevance.