Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Research article

Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise

Judith Fehrer1*, Karol Krak1 and Jindřich Chrtek12

Author Affiliations

1 Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, 25243 Průhonice, Czech Republic

2 Department of Botany, Faculty of Science, Charles University Prague, Benátská 2, 12801 Prague, Czech Republic

For all author emails, please log on.

BMC Evolutionary Biology 2009, 9:239  doi:10.1186/1471-2148-9-239

Published: 22 September 2009

Abstract

Background

Hieracium s.str. is a complex species-rich group of perennial herbs composed of few sexual diploids and numerous apomictic polyploids. The existence of reticulation and the near-continuity of morphological characters across taxa seriously affect species determination, making Hieracium one of the best examples of a 'botanist's nightmare'. Consequently, its species relationships have not previously been addressed by molecular methods. Concentrating on the supposed major evolutionary units, we used nuclear ribosomal (ETS) and chloroplast (trnT-trnL) sequences in order to disentangle the phylogenetic relationships and to infer the origins of the polyploids.

Results

Despite relatively low interspecific variation, the nuclear data revealed the existence of two major groups roughly corresponding to species with a Western or Eastern European origin. Extensive reticulation was mainly inferred from the character additivity of parental ETS variants. Surprisingly, many diploid species were of hybrid origin whilst several polyploid taxa showed no evidence of reticulation. Intra-individual ETS sequence polymorphism generally exceeded interspecific variation and was either independent of, or additional to, additive patterns accounted for by hybrid origin. Several ETS ribotypes occurred in different hybrid taxa, but never as the only variant in any species analyzed.

Conclusion

The high level of intra-individual ETS polymorphism prevented straightforward phylogenetic analysis. Characterization of this variation as additive, shared informative, homoplasious, or unique made it possible to uncover the phylogenetic signal and to reveal the hybrid origin of 29 out of 60 accessions. Contrary to expectation, diploid sexuals and polyploid apomicts did not differ in their molecular patterns. The basic division of the genus into two major clades had not previously been intimated on morphological grounds. Both major groups are thought to have survived in different glacial refugia and to have hybridized as a result of secondary contact. Several lines of evidence suggest the data is best explained by the presence of an extinct range of variation and a larger diversity of ancestral diploids in former times rather than by unsampled variation. Extinct diversity and extensive reticulation are thought to have largely obscured the species relationships. Our study illustrates how multigene sequences can be used to disentangle the evolutionary history of agamic complexes or similarly difficult datasets.