Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Research article

DNA from extinct giant lemurs links archaeolemurids to extant indriids

Ludovic Orlando1, Sébastien Calvignac1, Céline Schnebelen1, Christophe J Douady2, Laurie R Godfrey3 and Catherine Hänni1*

Author Affiliations

1 Paléogénétique et Evolution Moléculaire, Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, Institut Fédératif Biosciences Gerland Lyon Sud, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cédex 07, France

2 CNRS UMR 5023, Laboratoire d'Ecologie des Hydrosystèmes Fluviaux, Université Claude Bernard Lyon 1, 6 rue R. Dubois, Bat. Darwin-C, F-69622 Villeurbanne Cédex, France

3 Department of Anthropology, 240 Hicks Way, University of Massachusetts, Amherst, MA 01003, USA

For all author emails, please log on.

BMC Evolutionary Biology 2008, 8:121  doi:10.1186/1471-2148-8-121

Published: 28 April 2008

Abstract

Background

Although today 15% of living primates are endemic to Madagascar, their diversity was even greater in the recent past since dozens of extinct species have been recovered from Holocene excavation sites. Among them were the so-called "giant lemurs" some of which weighed up to 160 kg. Although extensively studied, the phylogenetic relationships between extinct and extant lemurs are still difficult to decipher, mainly due to morphological specializations that reflect ecology more than phylogeny, resulting in rampant homoplasy.

Results

Ancient DNA recovered from subfossils recently supported a sister relationship between giant "sloth" lemurs and extant indriids and helped to revise the phylogenetic position of Megaladapis edwardsi among lemuriformes, but several taxa – such as the Archaeolemuridae – still await analysis. We therefore used ancient DNA technology to address the phylogenetic status of the two archaeolemurid genera (Archaeolemur and Hadropithecus). Despite poor DNA preservation conditions in subtropical environments, we managed to recover 94- to 539-bp sequences for two mitochondrial genes among 5 subfossil samples.

Conclusion

This new sequence information provides evidence for the proximity of Archaeolemur and Hadropithecus to extant indriids, in agreement with earlier assessments of their taxonomic status (Primates, Indrioidea) and in contrast to recent suggestions of a closer relationship to the Lemuridae made on the basis of analyses of dental developmental and postcranial characters. These data provide new insights into the evolution of the locomotor apparatus among lemurids and indriids.