Figure 2.

A simple example of network evolution. (a) At the regulatory level, gene 4 receives inputs from genes 1 and 2 in the ancestral state (inputs to genes 1, 2 and 3 not shown). A hypothetical protein expression pattern for this system is also shown (b). Following duplication and degeneration, regulatory subfunctionalization arises for gene 4 (dotted interactions are lost). A new input from gene 3 means we additionally have neofunctionalization, i.e., subneofunctionalization. After further degeneration (a, right) regulatory subfunctionalization is lost, while neofunctionalization is retained. (c) All three post-duplication states (sub-, subneo-, neo-functionalization) will result in temporal subfunctionalization for gene 4, since in the second and third timesteps only the first copy (u4) is ON, whereas in the fifth and sixth timesteps only the second copy (v4) is ON.

MacCarthy and Bergman BMC Evolutionary Biology 2007 7:213   doi:10.1186/1471-2148-7-213
Download authors' original image