Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Highly Accessed Research article

Rapid adaptation to mammalian sociality via sexually selected traits

Adam C Nelson12*, Kevin E Colson3, Steve Harmon4 and Wayne K Potts1

Author affiliations

1 Department of Biology, University of Utah, Salt Lake City, UT 84112, USA

2 Current address: Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA

3 Institute of Arctic Biology, University of Alaska Fairbanks, 902 N. Koyukuk Dr, PO Box 757000, Fairbanks, AK, 99775, USA

4 Oklahoma State College of Osteopathic Medicine, 1111 W. 17th St, Tulsa, OK, 74107, USA

For all author emails, please log on.

Citation and License

BMC Evolutionary Biology 2013, 13:81  doi:10.1186/1471-2148-13-81

Published: 11 April 2013



Laboratory studies show that the components of sexual selection (e.g., mate choice and intrasexual competition) can profoundly affect the development and fitness of offspring. Less is known, however, about the total effects of sexual selection on offspring in normal social conditions. Complex social networks, such as dominance hierarchies, regulate the opportunity for mating success, and are often missing from laboratory studies. Social selection is an extended view of sexual selection that incorporates competition during sexual and nonsexual interactions, and predicts complex evolutionary dynamics. Whether social selection improves or constrains offspring fitness is controversial.


To identify fitness consequences of social selection, wild-derived mice that had bred under laboratory conditions for eight generations were re-introduced to naturalistic competition in enclosures for three consecutive generations (promiscuous line). In parallel, a control lineage bred in cages under random mate assignment (monogamous line). A direct competition experiment using second-generation animals revealed that promiscuous line males had greater reproductive success than monogamous line males (particularly during extra-territorial matings), in spite of higher mortality and equivalent success in social dominance and sperm competition. There were no major female fitness effects (though promiscuous line females had fewer litters than monogamous line females). This result suggested that selection primarily acted upon a sexually attractive male phenotype in the promiscuous line, a hypothesis we confirmed in female odor and mating preference trials.


We present novel evidence for the strength of sexual selection under normal social conditions, and show rapid male adaptation driven largely by sexual trait expression, with tradeoffs in survivorship and female fecundity. Re-introducing wild-derived mice to competition quickly uncovers sexually selected phenotypes otherwise lost in normal colony breeding.

Social selection; Sexual selection; Mate choice; Chemical communication; Tradeoffs