Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Highly Accessed Research article

The mammalian PYHIN gene family: Phylogeny, evolution and expression

Jasmyn A Cridland1, Eva Z Curley1, Michelle N Wykes2, Kate Schroder3, Matthew J Sweet3, Tara L Roberts2, Mark A Ragan34, Karin S Kassahn345 and Katryn J Stacey13*

Author Affiliations

1 The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Qld, 4072, Australia

2 Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Qld, 4006, Australia

3 The University of Queensland, Brisbane, Qld, 4072, Australia

4 The University of Queensland, ARC Centre of Excellence in Bioinformatics, Brisbane, Qld, 4072, Australia

5 The University of Queensland, Centre for Medical Genomics, Brisbane, Qld, 4072, Australia

For all author emails, please log on.

BMC Evolutionary Biology 2012, 12:140  doi:10.1186/1471-2148-12-140

Published: 7 August 2012

Abstract

Background

Proteins of the mammalian PYHIN (IFI200/HIN-200) family are involved in defence against infection through recognition of foreign DNA. The family member absent in melanoma 2 (AIM2) binds cytosolic DNA via its HIN domain and initiates inflammasome formation via its pyrin domain. AIM2 lies within a cluster of related genes, many of which are uncharacterised in mouse. To better understand the evolution, orthology and function of these genes, we have documented the range of PYHIN genes present in representative mammalian species, and undertaken phylogenetic and expression analyses.

Results

No PYHIN genes are evident in non-mammals or monotremes, with a single member found in each of three marsupial genomes. Placental mammals show variable family expansions, from one gene in cow to four in human and 14 in mouse. A single HIN domain appears to have evolved in the common ancestor of marsupials and placental mammals, and duplicated to give rise to three distinct forms (HIN-A, -B and -C) in the placental mammal ancestor. Phylogenetic analyses showed that AIM2 HIN-C and pyrin domains clearly diverge from the rest of the family, and it is the only PYHIN protein with orthology across many species. Interestingly, although AIM2 is important in defence against some bacteria and viruses in mice, AIM2 is a pseudogene in cow, sheep, llama, dolphin, dog and elephant. The other 13 mouse genes have arisen by duplication and rearrangement within the lineage, which has allowed some diversification in expression patterns.

Conclusions

The role of AIM2 in forming the inflammasome is relatively well understood, but molecular interactions of other PYHIN proteins involved in defence against foreign DNA remain to be defined. The non-AIM2 PYHIN protein sequences are very distinct from AIM2, suggesting they vary in effector mechanism in response to foreign DNA, and may bind different DNA structures. The PYHIN family has highly varied gene composition between mammalian species due to lineage-specific duplication and loss, which probably indicates different adaptations for fighting infectious disease. Non-genomic DNA can indicate infection, or a mutagenic threat. We hypothesise that defence of the genome against endogenous retroelements has been an additional evolutionary driver for PYHIN proteins.

Keywords:
PYHIN; HIN-200; cytosolic DNA; ALR; IFI16; AIM2