Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Research article

Expression level, cellular compartment and metabolic network position all influence the average selective constraint on mammalian enzymes

Corey M Hudson1* and Gavin C Conant12

Author affiliations

1 Informatics Institute, University of Missouri, Columbia, MO, USA

2 Division of Animal Sciences, University of Missouri, Columbia, MO, USA

For all author emails, please log on.

Citation and License

BMC Evolutionary Biology 2011, 11:89  doi:10.1186/1471-2148-11-89

Published: 6 April 2011

Abstract

Background

A gene's position in regulatory, protein interaction or metabolic networks can be predictive of the strength of purifying selection acting on it, but these relationships are neither universal nor invariably strong. Following work in bacteria, fungi and invertebrate animals, we explore the relationship between selective constraint and metabolic function in mammals.

Results

We measure the association between selective constraint, estimated by the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions, and several, primarily metabolic, measures of gene function. We find significant differences between the selective constraints acting on enzyme-coding genes from different cellular compartments, with the nucleus showing higher constraint than genes from either the cytoplasm or the mitochondria. Among metabolic genes, the centrality of an enzyme in the metabolic network is significantly correlated with Ka/Ks. In contrast to yeasts, gene expression magnitude does not appear to be the primary predictor of selective constraint in these organisms.

Conclusions

Our results imply that the relationship between selective constraint and enzyme centrality is complex: the strength of selective constraint acting on mammalian genes is quite variable and does not appear to exclusively follow patterns seen in other organisms.