Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Research article

Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

Lothar Wissler1, Francisco M Codoñer2, Jenny Gu1, Thorsten BH Reusch3, Jeanine L Olsen4, Gabriele Procaccini5* and Erich Bornberg-Bauer1*

Author affiliations

1 Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, D48149 Muenster, Germany

2 IRSI-Caixa Fundation, Hospital Universitari Germans Trias I Pujol, Crta de Canyet s/n 08916 Badalona, Spain

3 Leibniz-Institut fuer Meereswissenschaften IFM-Geomar, Duesternbrooker Weg 20, D24105 Kiel, Germany

4 Dept. Marine Benthic Ecology and Evolution, Centre for Ecological and Evolutionary Studies, University of Groningen, Centre for Life Sciences, Nijenborgh 7, 9747 AG Groningen, The Netherlands

5 Stazione Zoologica A Dohrn, Villa Comunale, 80121 Naples, Italy

For all author emails, please log on.

Citation and License

BMC Evolutionary Biology 2011, 11:8  doi:10.1186/1471-2148-11-8

Published: 12 January 2011

Abstract

Background

Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat.

Results

In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis.

Conclusions

These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.