Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Research article

Surviving historical Patagonian landscapes and climate: molecular insights from Galaxias maculatus

Tyler S Zemlak1*, Evelyn M Habit2, Sandra J Walde1, Cecilia Carrea3 and Daniel E Ruzzante1

Author Affiliations

1 Department of Biology, Dalhousie University, Halifax Nova Scotia, Canada B3H 4J1

2 Environmental Science Centre EULA-Chile, Universidad de Concepción, and Centro de Investigaciones en Ecosistemas Patagónicos (CIEP), Chile

3 Universidad Nacional de Comahue, Quintral 1250, San Carlos de Bariloche, 8400 Rio Negro, Argentina

For all author emails, please log on.

BMC Evolutionary Biology 2010, 10:67  doi:10.1186/1471-2148-10-67

Published: 8 March 2010

Abstract

Background

The dynamic geological and climatic histories of temperate South America have played important roles in shaping the contemporary distributions and genetic diversity of endemic freshwater species. We use mitochondria and nuclear sequence variation to investigate the consequences of mountain barriers and Quaternary glacial cycles for patterns of genetic diversity in the diadromous fish Galaxias maculatus in Patagonia (~300 individuals from 36 locations).

Results

Contemporary populations of G. maculatus, east and west of the Andes in Patagonia, represent a single monophyletic lineage comprising several well supported groups. Mantel tests using control region data revealed a strong positive relationship when geographic distance was modeled according to a scenario of marine dispersal. (r = 0.69, P = 0.055). By contrast, direct distance between regions was poorly correlated with genetic distance (r = -0.05, P = 0.463). Hierarchical AMOVAs using mtDNA revealed that pooling samples according to historical (pre-LGM) oceanic drainage (Pacific vs. Atlantic) explained approximately four times more variance than pooling them into present-day drainage (15.6% vs. 3.7%). Further post-hoc AMOVA tests revealed additional genetic structure between populations east and west of the Chilean Coastal Cordillera (coastal vs. interior). Overall female effective population size appears to have remained relatively constant until roughly 0.5 Ma when population size rapidly increased several orders of magnitude [100× (60×-190×)] to reach contemporary levels. Maximum likelihood analysis of nuclear alleles revealed a poorly supported gene tree which was paraphyletic with respect to mitochondrial-defined haplogroups.

Conclusions

First diversifying in the central/north-west region of Patagonia, G. maculatus extended its range into Argentina via the southern coastal regions that join the Pacific and Atlantic oceans. More recent gene flow between northern populations involved the most ancient and most derived lineages, and was likely facilitated by drainage reversal(s) during one or more cooling events of the late Pleistocene. Overall female effective population size represents the end result of a widespread and several hundred-fold increase over approximately 0.5 Ma, spanning several climatic fluctuations of the Pleistocene. The minor influence of glacial cycles on the genetic structure and diversity of G. maculatus likely reflects the access to marine refugia during repeated bouts of global cooling. Evidence of genetic structure that was detected on a finer scale between lakes/rivers is most likely the result of both biological attributes (i.e., resident non-migratory behavior and/or landlocking and natal homing in diadromous populations), and the Coastal Cordillera as a dispersal barrier.