Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Research article

Molecular evolution of the duplicated TFIIAγ genes in Oryzeae and its relatives

Hong-Zheng Sun12 and Song Ge12*

Author Affiliations

1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

2 The Graduate University of the Chinese Academy of Sciences, Beijing 100039, China

For all author emails, please log on.

BMC Evolutionary Biology 2010, 10:128  doi:10.1186/1471-2148-10-128

Published: 4 May 2010



Gene duplication provides raw genetic materials for evolutionary novelty and adaptation. The evolutionary fate of duplicated transcription factor genes is less studied although transcription factor gene plays important roles in many biological processes. TFIIAγ is a small subunit of TFIIA that is one of general transcription factors required by RNA polymerase II. Previous studies identified two TFIIAγ-like genes in rice genome and found that these genes either conferred resistance to rice bacterial blight or could be induced by pathogen invasion, raising the question as to their functional divergence and evolutionary fates after gene duplication.


We reconstructed the evolutionary history of the TFIIAγ genes from main lineages of angiosperms and demonstrated that two TFIIAγ genes (TFIIAγ1 and TFIIAγ5) arose from a whole genome duplication that happened in the common ancestor of grasses. Likelihood-based analyses with branch, codon, and branch-site models showed no evidence of positive selection but a signature of relaxed selective constraint after the TFIIAγ duplication. In particular, we found that the nonsynonymous/synonymous rate ratio (ω = dN/dS) of the TFIIAγ1 sequences was two times higher than that of TFIIAγ5 sequences, indicating highly asymmetric rates of protein evolution in rice tribe and its relatives, with an accelerated rate of TFIIAγ1 gene. Our expression data and EST database search further indicated that after whole genome duplication, the expression of TFIIAγ1 gene was significantly reduced while TFIIAγ5 remained constitutively expressed and maintained the ancestral role as a subunit of the TFIIA complex.


The evolutionary fate of TFIIAγ duplicates is not consistent with the neofunctionalization model that predicts that one of the duplicated genes acquires a new function because of positive Darwinian selection. Instead, we suggest that subfunctionalization might be involved in TFIIAγ evolution in grasses. The fact that both TFIIAγ1 and TFIIAγ5 genes were effectively involved in response to biotic or abiotic factors might be explained by either Dykhuizen-Hartl effect or buffering hypothesis.