Email updates

Keep up to date with the latest news and content from BMC Developmental Biology and BioMed Central.

Open Access Research article

HOXA13 and HOXD13 expression during development of the syndactylous digits in the marsupial Macropus eugenii

Keng Yih Chew12, Hongshi Yu12, Andrew J Pask123, Geoffrey Shaw12 and Marilyn B Renfree12*

Author Affiliations

1 ARC Centre of Excellence in Kangaroo Genomics, The University of Melbourne, Melbourne, Victoria, 3010, Australia

2 Department of Zoology, The University of Melbourne, Melbourne, Victoria, 3010, Australia

3 Department of Molecular and Cellular Biology, The University of Connecticut, Storrs, CT 06269, USA

For all author emails, please log on.

BMC Developmental Biology 2012, 12:2  doi:10.1186/1471-213X-12-2

Published: 11 January 2012

Abstract

Background

Kangaroos and wallabies have specialised limbs that allow for their hopping mode of locomotion. The hindlimbs differentiate much later in development but become much larger than the forelimbs. The hindlimb autopod has only four digits, the fourth of which is greatly elongated, while digits two and three are syndactylous. We investigated the expression of two genes, HOXA13 and HOXD13, that are crucial for digit patterning in mice during formation of the limbs of the tammar wallaby.

Results

We describe the development of the tammar limbs at key stages before birth. There was marked heterochrony and the hindlimb developed more slowly than the forelimb. Both tammar HOXA13 and HOXD13 have two exons as in humans, mice and chickens. HOXA13 had an early and distal mRNA distribution in the tammar limb bud as in the mouse, but forelimb expression preceded that in the hindlimb. HOXD13 mRNA was expressed earlier in the forelimb than the hindlimb and was predominantly detected in the interdigital tissues of the forelimb. In contrast, the hindlimb had a more restricted expression pattern that appeared to be expressed at discrete points at both posterior and anterior margins of the limb bud, and was unlike expression seen in the mouse and the chicken.

Conclusions

This is the first examination of HOXA and HOXD gene expression in a marsupial. The gene structure and predicted proteins were highly conserved with their eutherian orthologues. Interestingly, despite the morphological differences in hindlimb patterning, there were no modifications to the polyalanine tract of either HOXA13 or HOXD13 when compared to those of the mouse and bat but there was a marked difference between the tammar and the other mammals in the region of the first polyserine tract of HOXD13. There were also altered expression domains for both genes in the developing tammar limbs compared to the chicken and mouse. Together these findings suggest that the timing of HOX gene expression may contribute to the heterochrony of the forelimb and hindlimb and that alteration to HOX domains may influence phenotypic differences that lead to the development of marsupial syndactylous digits.