Email updates

Keep up to date with the latest news and content from BMC Developmental Biology and BioMed Central.

Open Access Highly Accessed Research article

Conservation of MAP kinase activity and MSP genes in parthenogenetic nematodes

Peter Heger*, Michael Kroiher, Nsah Ndifon and Einhard Schierenberg

Author Affiliations

Zoological Institute, University of Cologne, Zülpicher Strasse 47b, 50674 Köln, Germany

For all author emails, please log on.

BMC Developmental Biology 2010, 10:51  doi:10.1186/1471-213X-10-51

Published: 17 May 2010

Abstract

Background

MAP (mitogen-activated protein) kinase activation is a prerequisite for oocyte maturation, ovulation and fertilisation in many animals. In the hermaphroditic nematode Caenorhabditis elegans, an MSP (major sperm protein) dependent pathway is utilised for MAP kinase activation and successive oocyte maturation with extracellular MSP released from sperm acting as activator. How oocyte-to-embryo transition is triggered in parthenogenetic nematode species that lack sperm, is not known.

Results

We investigated two key elements of oocyte-to-embryo transition, MSP expression and MAP kinase signaling, in two parthenogenetic nematodes and their close hermaphroditic relatives. While activated MAP kinase is present in all analysed nematodes irrespective of the reproductive mode, MSP expression differs. In contrast to hermaphroditic or bisexual species, we do not find MSP expression at the protein level in parthenogenetic nematodes. However, genomic sequence analysis indicates that functional MSP genes are present in several parthenogenetic species.

Conclusions

We present three alternative interpretations to explain our findings. (1) MSP has lost its function as a trigger of MAP kinase activation and is not expressed in parthenogenetic nematodes. Activation of the MAP kinase pathway is achieved by another, unknown mechanism. Functional MSP genes are required for occasionally emerging males found in some parthenogenetic species. (2) Because of long-term disadvantages, parthenogenesis is of recent origin. MSP genes remained intact during this short intervall although they are useless. As in the first scenario, an unknown mechanism is responsible for MAP kinase activation. (3) The molecular machinery regulating oocyte-to-embryo transition in parthenogenetic nematodes is conserved with respect to C. elegans, thus requiring intact MSP genes. However, MSP expression has been shifted to non-sperm cells and is reduced below the detection limits, but is still sufficient to trigger MAP kinase activation and embryogenesis.