Email updates

Keep up to date with the latest news and content from BMC Cell Biology and BioMed Central.

Open Access Highly Accessed Research article

Distribution of DNA replication proteins in Drosophila cells

Hariharan P Easwaran13*, Heinrich Leonhardt12 and M Cristina Cardoso1*

Author Affiliations

1 Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany

2 Ludwig Maximilians University Munich, Department of Biology, 82152 Planegg-Martinsried, Germany

3 Current address : Cancer Research Building, 1650 Orleans Street, Baltimore, MD 21231-1000, USA

For all author emails, please log on.

BMC Cell Biology 2007, 8:42  doi:10.1186/1471-2121-8-42

Published: 15 October 2007

Abstract

Background

DNA replication in higher eukaryotic cells is organized in discrete subnuclear sites called replication foci (RF). During the S phase, most replication proteins assemble at the RF by interacting with PCNA via a PCNA binding domain (PBD). This has been shown to occur for many mammalian replication proteins, but it is not known whether this mechanism is conserved in evolution.

Results

Fluorescent fusions of mammalian replication proteins, Dnmt1, HsDNA Lig I and HsPCNA were analyzed for their ability to target to RF in Drosophila cells. Except for HsPCNA, none of the other proteins and their deletions showed any accumulation at RF in Drosophila cells. We hypothesized that in Drosophila cells there might be some other peptide sequence responsible for targeting proteins to RF. To test this, we identified the DmDNA Lig I and compared the protein sequence with HsDNA Lig I. The two orthologs shared the PBD suggesting a functionally conserved role for this domain in the Drosophila counterpart. A series of deletions of DmDNA Lig I were analyzed for their ability to accumulate at RF in Drosophila and mammalian cells. Surprisingly, no accumulation at RF was observed in Drosophila cells, while in mammalian cells DmDNA Lig I accumulated at RF via its PBD. Further, GFP fusions with the PBD domains from Dnmt1, HsDNA Lig I and DmDNA Lig I, were able to target to RF only in mammalian cells but not in Drosophila cells.

Conclusion

We show that S phase in Drosophila cells is characterized by formation of RF marked by PCNA like in mammalian cells. However, other than PCNA none of the replication proteins and their deletions tested here showed accumulation at RF in Drosophila cells while the same proteins and deletions are capable of accumulating at RF in mammalian cells. We hypothesize that unlike mammalian cells, in Drosophila cells, replication proteins do not form long-lasting interactions with the replication machinery, and rather perform their functions via very transient interactions at the RF.