Email updates

Keep up to date with the latest news and content from BMC Cell Biology and BioMed Central.

Open Access Research article

Down-regulation of the M6P/IGF-II receptor increases cell proliferation and reduces apoptosis in neonatal rat cardiac myocytes

Zhihong Chen, Yinlin Ge and Jing X Kang*

Author Affiliations

Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA

For all author emails, please log on.

BMC Cell Biology 2004, 5:15  doi:10.1186/1471-2121-5-15

Published: 28 April 2004

Abstract

Background

The mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF2R) is a multi-functional protein that has been implicated in regulation of cell growth and apoptosis. Cardiac myocytes express relatively high levels of M6P/IGF2R, and cardiomyocyte apoptosis has been identified in a variety of cardiovascular disorders, such as myocardial infarction and heart failure. However, involvement of M6P/IGF2R in the pathogenesis of these conditions has not been determined. Thus, the objective of this study was to determine the role of M6P/IGF2R in regulation of cardiac myocyte growth and apoptosis.

Results

We down-regulated the expression of M6P/IGF2R in neonatal rat cardiac myocytes and examined the effect on cell proliferation and apoptosis. Infection of neonatal cardiomyocytes with an adenovirus expressing a ribozyme targeted against the M6P/IGF2R significantly reduced the level of M6P/IGF2R mRNA, as determined by RT-PCR and Ribonuclease Protection Assay (RPA). M6P-containing protein binding and endocytosis as well as the M6P/IGF2R-mediated internalization of 125I-IGF-II were lower in the ribozyme-treated cells than the control myocytes, indicating that the number of functional M6P/IGF2R in the ribozyme treated cells was reduced. Accordingly, a marked increase in cell proliferation and a reduced cell susceptibility to hypoxia- and TNF-induced apoptosis were observed in the ribozyme-treated cells.

Conclusions

These findings suggest that M6P/IGF2R may play a role in regulation of cardiac myocyte growth and apoptosis. Down regulation of this gene in cardiac tissues might be a new approach to prevention of cell death or promotion of mitogenesis for certain heart diseases.