Email updates

Keep up to date with the latest news and content from BMC Cell Biology and BioMed Central.

Open Access Research article

Constant or fluctuating hyperglycemias increases cytomembrane stiffness of human umbilical vein endothelial cells in culture: roles of cytoskeletal rearrangement and nitric oxide synthesis

Xianxian Chen1, Lie Feng1* and Hua Jin2

Author Affiliations

1 The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China

2 Department of Chemistry, Jinan University, Guangzhou, Guangdong, China

For all author emails, please log on.

BMC Cell Biology 2013, 14:22  doi:10.1186/1471-2121-14-22

Published: 22 April 2013

Abstract

Background

Previous studies have implicated continuous or intermittent hyperglycemia in altered endothelium-derived nitric oxide (NO) synthesis. NO can regulate both the F-actin cytoskeleton and endothelial cell membrane stiffness. Atomic force microscopy (AFM) is a powerful tool that can be used to study plasma membrane deformability at the single cell level. As membrane stiffness is partially dependent on filamentous F-actin, the interdependence of these parameters can be studied through the combined approaches of AFM and laser scanning confocal microscopy (LSCM). In the present study, we evaluated the effects of constant or fluctuating hyperglycemia on endothelial-derived NO synthesis, the cytoskeletal contribution and endothelial cell membrane stiffness.

Results

Compared to control cells cultured in low glucose (5 mM), constant (25 mM) or fluctuating (25/5 mM) high glucose significantly decreased NO release along with stiffening of endothelial cell membranes and F-actin rearrangement. The non-selective nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) exerted similar effects on endothelial cells. Increasing concentrations of L-NAME (from 0.1 to 1 mM) exacerbated these effects in a concentration-dependent manner.

Conclusions

Result from the present study suggest that stiffening endothelial cell membranes are associated with decreased NO synthesis, which was established through the F-actin cytoskeletal redistribution. The precise mechanisms of hyperglycemia-induced endothelial dysfunction require further investigation.