Email updates

Keep up to date with the latest news and content from BMC Cell Biology and BioMed Central.

Open Access Research article

A role for p38 MAPK in the regulation of ciliary motion in a eukaryote

Margarida Ressurreição12, David Rollinson2, Aidan M Emery2 and Anthony J Walker1*

Author affiliations

1 School of Life Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK

2 Wolfson Wellcome Biomedical Laboratories, Zoology Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK

For all author emails, please log on.

Citation and License

BMC Cell Biology 2011, 12:6  doi:10.1186/1471-2121-12-6

Published: 26 January 2011

Abstract

Background

Motile cilia are essential to the survival and reproduction of many eukaryotes; they are responsible for powering swimming of protists and small multicellular organisms and drive fluids across respiratory and reproductive surfaces in mammals. Although tremendous progress has been made to comprehend the biochemical basis of these complex evolutionarily-conserved organelles, few protein kinases have been reported to co-ordinate ciliary beat. Here we present evidence for p38 mitogen-activated protein kinase (p38 MAPK) playing a role in the ciliary beat of a multicellular eukaryote, the free-living miracidium stage of the platyhelminth parasite Schistosoma mansoni.

Results

Fluorescence confocal microscopy revealed that non-motile miracidia trapped within eggs prior to hatching displayed phosphorylated (activated) p38 MAPK associated with their ciliated surface. In contrast, freshly-hatched, rapidly swimming, miracidia lacked phosphorylated p38 MAPK. Western blotting and immunocytochemistry demonstrated that treatment of miracidia with the p38 MAPK activator anisomycin resulted in a rapid, sustained, activation of p38 MAPK, which was primarily localized to the cilia associated with the ciliated epidermal plates, and the tegument. Freshly-hatched miracidia possessed swim velocities between 2.17 - 2.38 mm/s. Strikingly, anisomycin-mediated p38 MAPK activation rapidly attenuated swimming, reducing swim velocities by 55% after 15 min and 99% after 60 min. In contrast, SB 203580, a p38 MAPK inhibitor, increased swim velocity by up to 15% over this duration. Finally, by inhibiting swimming, p38 MAPK activation resulted in early release of ciliated epidermal plates from the miracidium thus accelerating development to the post-miracidium larval stage.

Conclusions

This study supports a role for p38 MAPK in the regulation of ciliary-beat. Given the evolutionary conservation of signalling processes and cilia structure, we hypothesize that p38 MAPK may regulate ciliary beat and beat-frequency in a variety of eukaryotes.