Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Open Badges Methodology article

A Bayesian calibration model for combining different pre-processing methods in Affymetrix chips

Marta Blangiardo* and Sylvia Richardson

Author Affiliations

Centre for Biostatistics, Imperial College, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK

For all author emails, please log on.

BMC Bioinformatics 2008, 9:512  doi:10.1186/1471-2105-9-512

Published: 1 December 2008



In gene expression studies a key role is played by the so called "pre-processing", a series of steps designed to extract the signal and account for the sources of variability due to the technology used rather than to biological differences between the RNA samples. At the moment there is no commonly agreed gold standard pre-processing method and each researcher has the responsibility to choose one method, incurring the risk of false positive and false negative features arising from the particular method chosen.


We propose a Bayesian calibration model that makes use of the information provided by several pre-processing methods and we show that this model gives a better assessment of the 'true' unknown differential expression between two conditions. We demonstrate how to estimate the posterior distribution of the differential expression values of interest from the combined information.


On simulated data and on the spike-in Latin Square dataset from Affymetrix the Bayesian calibration model proves to have more power than each pre-processing method. Its biological interest is demonstrated through an experimental example on publicly available data.