Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Software

LC-MSsim – a simulation software for liquid chromatography mass spectrometry data

Ole Schulz-Trieglaff12*, Nico Pfeifer3, Clemens Gröpl2, Oliver Kohlbacher3 and Knut Reinert2

Author Affiliations

1 International Max Planck Research School for Computational Biology and Scientific Computing, Berlin, Germany

2 Department Computer Science and Mathematics, Free University of Berlin, Berlin, Germany

3 Wilhelm Schickard Institute for Computer Science, Tübingen University, Tübingen, Germany

For all author emails, please log on.

BMC Bioinformatics 2008, 9:423  doi:10.1186/1471-2105-9-423

Published: 8 October 2008

Abstract

Background

Mass Spectrometry coupled to Liquid Chromatography (LC-MS) is commonly used to analyze the protein content of biological samples in large scale studies. The data resulting from an LC-MS experiment is huge, highly complex and noisy. Accordingly, it has sparked new developments in Bioinformatics, especially in the fields of algorithm development, statistics and software engineering. In a quantitative label-free mass spectrometry experiment, crucial steps are the detection of peptide features in the mass spectra and the alignment of samples by correcting for shifts in retention time. At the moment, it is difficult to compare the plethora of algorithms for these tasks. So far, curated benchmark data exists only for peptide identification algorithms but no data that represents a ground truth for the evaluation of feature detection, alignment and filtering algorithms.

Results

We present LC-MSsim, a simulation software for LC-ESI-MS experiments. It simulates ESI spectra on the MS level. It reads a list of proteins from a FASTA file and digests the protein mixture using a user-defined enzyme. The software creates an LC-MS data set using a predictor for the retention time of the peptides and a model for peak shapes and elution profiles of the mass spectral peaks. Our software also offers the possibility to add contaminants, to change the background noise level and includes a model for the detectability of peptides in mass spectra. After the simulation, LC-MSsim writes the simulated data to mzData, a public XML format. The software also stores the positions (monoisotopic m/z and retention time) and ion counts of the simulated ions in separate files.

Conclusion

LC-MSsim generates simulated LC-MS data sets and incorporates models for peak shapes and contaminations. Algorithm developers can match the results of feature detection and alignment algorithms against the simulated ion lists and meaningful error rates can be computed. We anticipate that LC-MSsim will be useful to the wider community to perform benchmark studies and comparisons between computational tools.