Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Database

Automatically extracting functionally equivalent proteins from SwissProt

Lisa EM McMillan and Andrew CR Martin*

Author Affiliations

Research Department of Structural & Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK

For all author emails, please log on.

BMC Bioinformatics 2008, 9:418  doi:10.1186/1471-2105-9-418

Published: 6 October 2008



There is a frequent need to obtain sets of functionally equivalent homologous proteins (FEPs) from different species. While it is usually the case that orthology implies functional equivalence, this is not always true; therefore datasets of orthologous proteins are not appropriate. The information relevant to extracting FEPs is contained in databanks such as UniProtKB/Swiss-Prot and a manual analysis of these data allow FEPs to be extracted on a one-off basis. However there has been no resource allowing the easy, automatic extraction of groups of FEPs – for example, all instances of protein C.

We have developed FOSTA, an automatically generated database of FEPs annotated as having the same function in UniProtKB/Swiss-Prot which can be used for large-scale analysis. The method builds a candidate list of homologues and filters out functionally diverged proteins on the basis of functional annotations using a simple text mining approach.


Large scale evaluation of our FEP extraction method is difficult as there is no gold-standard dataset against which the method can be benchmarked. However, a manual analysis of five protein families confirmed a high level of performance. A more extensive comparison with two manually verified functional equivalence datasets also demonstrated very good performance.


In summary, FOSTA provides an automated analysis of annotations in UniProtKB/Swiss-Prot to enable groups of proteins already annotated as functionally equivalent, to be extracted. Our results demonstrate that the vast majority of UniProtKB/Swiss-Prot functional annotations are of high quality, and that FOSTA can interpret annotations successfully. Where FOSTA is not successful, we are able to highlight inconsistencies in UniProtKB/Swiss-Prot annotation. Most of these would have presented equal difficulties for manual interpretation of annotations. We discuss limitations and possible future extensions to FOSTA, and recommend changes to the UniProtKB/Swiss-Prot format, which would facilitate text-mining of UniProtKB/Swiss-Prot.